
®

erwin Data Modeler

Template Language and Macro Refer-

ence
Release 15.0

Legal Notices
This Documentation, which includes embedded help systems and electronically distributed mater-
ials (hereinafter referred to as the “Documentation”), is for your informational purposes only and
is subject to change or withdrawal by Quest Software, Inc and/or its aff i l iates at any t ime. This
Documentation is proprietary information of Quest Software, Inc and/or its aff i l iates and may not
be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of Quest Software, Inc and/or its aff i l iates

If you are a l icensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for
internal use by you and your employees in connection with that software, provided that all Quest
Software, Inc and/or its aff i l iates copyright notices and legends are aff ixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is l imited to the
period during which the applicable l icense for such software remains in full force and effect.
Should the l icense terminate for any reason, it is your responsibil i ty to certify in writ ing to Quest
Software, Inc and/or its aff i l iates that all copies and partial copies of the Documentation have
been returned to Quest Software, Inc and/or its aff i l iates or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, QUEST SOFTWARE, INC. PROVIDES
THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL QUEST SOFTWARE,
INC. BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR
INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION,
LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST
DATA, EVEN IF QUEST SOFTWARE, INC. IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable
l icense agreement and such l icense agreement is not modified in any way by the terms of this
notice.

The manufacturer of this Documentation is Quest Software, Inc and/or its aff i l iates.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Govern-
ment is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)
(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2025 Quest Software, Inc and/or its aff i l iates All r ights reserved. All trademarks,
trade names, service marks, and logos referenced herein belong to their respective companies.

Contact erwin
Understanding your Support

Review support maintenance programs and offerings .

Registering for Support

Access the erwin support site and register for product support.

Accessing Technical Support

For your convenience, erwin provides easy access to "One Stop" support for all edit ions of
erwin Data Modeler , and includes the following:

Online and telephone contact information for technical assistance and customer services

Information about user communities and forums

Product and documentation downloads

erwin Support policies and guidelines

Other helpful resources appropriate for your product

For information about other erwin products, visit erwin by Quest Products page .

Provide Feedback

I f you have comments or questions, or feedback about erwin product documentation, you can
send a message to techpubs@erwin.com .

News and Events

Visit News and Events to get up-to-date news, announcements, and events. View video demos
and read up on customer success stories and articles by industry experts.

https://www.quest.com/products/
https://support.quest.com/contact-support
https://support.quest.com/erwin-data-modeler/15.0
https://erwin.com/products
mailto:techpubs@erwin.com
https://www.erwin.com/resources/#f:events=[Events - Online,Events - Webcast On Demand]&f:language=[English]

Contents

Template Language and Macro Reference 12

Introduction 12

Metadata Names 12

TLX Syntax 15

Literals 15

Macros 16

Macro Return Codes 17

Keywords 17

Conditional Blocks 18

Propagating Blocks 18

Comments 18

TLX Expansion 20

Phantom Objects 22

Macro Overview 25

Name 25

Definition 25

Prototype Specification 26

Result Specification 26

Breaking Changes Specification 27

Categories 27

Sample 27

Standard Macros 28

Access_DatabaseName 32

Access_Datatype 32

AllowAlterDatatype 34

AreAllOwneesCreated 35

AreAllOwneesDeleted 36

AreStringsEqual 38

Choose 39

ClearAllGlobalFlags 40

ClearGlobalFlag 42

ClearLocalFlag 43

ConversionFunction 45

DatabaseConnection 46

Date 47

DBMSVersion 50

Decrement 52

Default 53

EnumProperty 55

EnumProperty2 56

Equal 58

Execute 59

ExecuteTest 62

Fail 64

ForEachFKColumn 65

ForEachMigratingColumn 66

ForEachOfType 67

ForEachOwnee 69

ForEachOwneeFrom 71

ForEachOwneeThrough 75

ForEachProperty 77

ForEachProperty.IsInherited 78

ForEachProperty.Type 79

ForEachProperty.Value 80

ForEachPropertyValue 81

ForEachPropertyValue.Value 82

ForEachReference 83

ForEachReference.IsInherited 85

ForEachReferenceFrom 86

ForEachReferenceThrough 88

ForEachReferencing 90

ForEachUserDefinedProperty 91

FormatProperty 93

Greater 95

GreaterOrEqual 97

HasOwnees 100

HasPropertyCharacteristic 101

IncludeFile 103

Increment 104

Integer 105

IsCreated 106

IsDefaultRITrigger 107

IsDeleted 109

IsGlobalFlagClear 110

IsGlobalFlagSet 111

IsLocalFlagSet 112

IsMatch 113

IsModified 115

IsNotInheritedFromUDD 116

IsOwnerPropertyEqual 117

IsOwnerPropertyFalse 118

IsOwnerPropertyNotEqual 120

IsOwnerPropertyTrue 121

IsPropertyEqual 122

IsPropertyEqualFrom 124

IsPropertyEqualThrough 126

IsPropertyFalse 127

IsPropertyFalseFrom 129

IsPropertyFalseThrough 130

IsPropertyModified 132

IsPropertyNotEqual 133

IsPropertyNotEqualFrom 134

IsPropertyNotEqualThrough 135

IsPropertyNotNull 136

IsPropertyNull 137

IsPropertyReordered 139

IsPropertyTrue 140

IsPropertyTrueFrom 142

IsPropertyTrueThrough 143

IterationCount 144

Left 145

Less 147

LessOrEqual 149

ListSeparator 152

Lookup 153

LookupProperty 155

Loop 157

LowerCase 158

Mid 159

Modulo 161

NotEqual 163

ObjectId 164

ObjectType 166

OnceForObject 167

OwnerProperty 169

OwnerQuotedName 171

Pad 172

Pop 174

Progress_ColumnDecimals 175

Progress_ColumnFormat 176

ProperCase 177

Property 178

PropertyFrom 181

PropertyThrough 183

PropertyValueCount 185

PropertyWithDefault 186

PushFKViewRelationship 188

PushNewImage 190

PushOldImage 191

PushOwner 192

PushReference 193

PushTopLevelObject 195

QuotedName 196

QuotedNameThrough 197

Remove 199

RemoveInteger 200

RemoveString 201

Repush 202

RepushType 204

Right 206

Separator 207

Set 208

SetGlobalFlag 209

SetInteger 210

SetLocalFlag 211

SetString 213

ShouldGenerate 214

String 215

Substitute 216

Switch 217

TableHasFilteredIndex 219

Trim 220

UpperCase 221

Value 222

Forward Engineering Macros 225

ActivateDataPreservation 225

DataPreservationOption 227

EndOfStatement 229

IsAlterScriptGeneration 230

IsEntityInSubjectArea 231

IsLastColumn 232

IsModified 233

IsSchemaGeneration 234

NextExistingColumn 235

Option 236

OwnerOverride 243

RecordAlter 245

RecordCreate 246

SchemaExecCommand 247

TempTable 248

Template Language and Macro Reference Guide 11

Template Language and Macro Reference

Template Language and Macro Reference Guide 12

Template Language and Macro Reference
This section contains the following topics

Introduction
Metadata Names

Introduction

Template Language (TLX) is the template or macro language publicly exposed with erwin Data
Modeler. It has been present in the product since erwin Data Modeler r7.0.

TLX is employed in a number of places in the product using expansion. This includes templates
used for forward engineering, metamodel dumps, and Model Explorer and Complete Compare
object naming.

Metadata Names

A number of macros make use of class names�the names of metadata objects. The section below
describes a few notes on the use of class names; the full listing of all object classes and property
classes is located in the document erwin Metamodel Reference bookshelf.

Class names are always case-sensitive.

Some object types represent an object in both the logical and the physical model. This is leg-
acy behavior when erwin Data Modeler had only logical/physical models. For these types of
objects, display names seen in erwin Data Modeler's user interface change based upon
whether you are looking at the logical or physical side. However, class names do not
change in a similar manner. Therefore, an entity in the logical model and a table in the phys-
ical model both have a class name of Entity.

The following list describes the class names that are included in this category:

Attribute

Default

Domain

Entity

Key_Group

Template Language and Macro Reference

#o6947
#o6948

Template Language and Macro Reference Guide 13

Relationship

Validation_Rule

Local User-Defined Properties (UDPs) have three part class names. All UDPs available in
the current release are classified as Local UDPs. erwin Data Modeler allows a given UDP
name to be used on a variety of object types, and in both the logical and physical model,
with differing data types, defaults, descriptions, and so on. For example, the UDP named
"Color" might be a color name on the logical side of an entity, a red-green-blue integer on
the physical side, and a Boolean value indicating if a view should be colored on reports. To
enable erwin Data Modeler to understand exactly what is being referenced, the actual class
name is comprised of: <object type>.<model side>.<name>.

For example, the three "Color" values mentioned would be: Entity.Logical.Color, Entity.Phys-
ical.Color and View.Physical.Color. Future releases of erwin Data Modeler may also support
Global User-Defined Properties where the property has a single data type, default, and so on, no
matter where it occurs. Those UDPs will follow the normal naming convention of built-in properties,
having a single-part name.

Template Language and Macro Reference

Template Language and Macro Reference Guide 14

TLX Syntax

Template Language and Macro Reference Guide 15

TLX Syntax
The following sections provide a brief review of the TLX syntax.

This section contains the following topics

Literals
Macros
Keywords
Conditional Blocks
Propagating Blocks
Comments

Literals

Literal text is enclosed in double quotation marks. This includes literals intended for the final expan-
ded output and literals used as parameters to macros. For example,

 "This is a text literal", Property("Name").

The valid characters for a literal include the printing characters (those higher than 32 decimal).
Escape sequences are used for some characters. The escape sequences that are currently sup-
ported are as follows:

\n

Carriage return

\t

Horizontal tab character

\\

Back slash

\"

Double quote

One advantage to explicitly-delimited literals is that the formatting of the source and the output can
vary. Source text can be formatted exactly as needed because the output text is formatted based
upon tabs, spaces, and carriage returns embedded in literals.

TLX Syntax

#o6950
#o6951
#o6953
#o6954
#o6955
#o6956

Template Language and Macro Reference Guide 16

Macros

Any text not enclosed in double quote marks, and that does not start with an at sign, is a macro
name. For example,

 MyMacro

If parameters are being passed to a macro, they will follow the macro name enclosed in par-
entheses. If more than one parameter is supplied, they are separated by commas. All parameters
are string values.

 MyMacro("Parameter1", "Parameter2")

There are two general classes of macros: substitution and iteration macros.

Substitution Macros

Substitution macros evaluate to a string value. A substitution macro takes the form described in
the previous section: a macro name and possibly a parameter list. For example,

 Property("Name").

The resulting string may be an empty value if the actual operations performed by the macro are the
purpose of the macro. For example, a macro that writes data out to a file might evaluate to an
empty string.

Iteration Macros

Iteration macros (usually) loop through objects in the model. Iteration macros do not evaluate to
string values themselves.

An iteration macro may or may not have parameters, just like a substitution macro, but they are fol-
lowed by curly braces denoting an iteration block.

 ForEachOwnee("Attribute")
 {
 Property("Name")
 }

The source text inside the iteration block is evaluated once for each time that the iterator incre-
ments.

TLX Syntax

Template Language and Macro Reference Guide 17

Some iterator macros do not actually traverse objects. For example, they might traverse values on
the object. Generally, this type of iterator macro will have special accessor macros that allow these
values to be retrieved.

The form of this type of iterator macro is identical. For example:

 ForEachProperty
 {
 ForEachProperty.Value
 }

Macro Return Codes

When a macro is evaluated, it returns a success code to the TLX template processor. If the macro
succeeds, it returns 'true'; if it fails, it returns 'false'.

For a substitution macro, the return code and the string value it evaluates into are not the same
thing the macro may evaluate to an empty string and return 'true' to indicate a successful eval-
uation.

Iterator macros are invoked once before the iteration begins, and then once on each iteration. If
the initial invocation fails, no iterations are performed. The looping continues until the macro
returns 'false' from a request to increment.

Keywords

Unquoted text that starts with an at sign indicates a keyword. Currently, TLX supports four
keywords for conditional control: @if, @ifnot, @elseif and @else. These are not case-sensitive.

These conditional keywords are followed by a block enclosed with curly braces, much like an iter-
ation macro. The code within the block is evaluated only if the condition is true.

 @if (Equal(Property("Name"), "Delaware"))
 {
 "The first state."
 }
 @elseif(Equal(Property("Name"), "Hawaii"))
 {
 "The last state."
 }
 @else
 {

TLX Syntax

Template Language and Macro Reference Guide 18

 "A state somewhere in the middle."
 }

Conditional Blocks

The @if/@elseif keywords provide conditional evaluation. An alternate mechanism for conditional
behavior is the conditional block. Source text enclosed in square brackets is in a conditional block.
A conditional block is emitted only if all macros within it succeed. The block stops evaluating when
it encounters a failure.

The choice of whether to use conditional blocks or @if/@elseif statements is up to the user con-
ditional blocks can provide a format that is easier to read than an embedded @if block in some situ-
ations. For example:

 "CREATE TABLE " [Property("DB Owner" "."] Property("Physical
Name")

Conditional blocks have no effect on enclosing blocks.

Propagating Blocks

Source text enclosed in angle brackets is in a propagating block. Propagating blocks essentially
have a return code just like a macro does. They succeed if the text within them after evaluation is
not empty; they fail otherwise.

In the following example, if we can find a first name or last name on the object, text will emit. If we
can find neither, nothing will emit because the propagating block will cause a failure in the outer
conditional block. If the propagating block was not used, the literal "My name is" would be emitted
even if no name was present.

 ["My name is"
 < [" " Property("Name")] [" " Property("Last Name")] >
]

Comments

Text that is enclosed in C-style comments is ignored by the TLX parser and does not become part
of the final output.

 /* This is a comment */

TLX Syntax

Template Language and Macro Reference Guide 19

TLX Expansion

Template Language and Macro Reference Guide 20

TLX Expansion
This section contains the following topics

Phantom Objects

When macros are evaluating, they are generally operating on objects in the model. For example,
the Property macro reads the value from a property on the "current" object. This current object is
referred to as the context object. Objects become the current object by placing them on the context
stack. This is an ordered list that operates in a Last In/First Out manner�objects are added to the
list by pushing and removed from the list by popping them.

If you are familiar with erwin Data Modeler's Macro Language, this concept has been present since
the earliest days. For example, in erwin Data Modeler r7.2 you could write %ForEachEntity(E_1).
This would establish 'E_1' as the current object for subsequent macro calls. Additionally, many
macros such as %JoinFKPK or %RelRI would only operate inside certain iterators or editors. This
was because they required a certain context stack to be in existence internally.

This concept is simply being exposed more fully now to provide you more control.

As an illustration, suppose the TLX parser is invoked with an Attribute as the starting object. The
context stack would have one entry:

Now a macro is used that pushes the Attribute object's owning Entity onto the stack. The stack will
now have two entries, with the Entity being the current object.

TLX Expansion

#o6961

Template Language and Macro Reference Guide 21

Now another macro is used that pops the last object from the stack. The stack now reverts to hav-
ing only the Attribute in it and it is the current object.

Many macros operate upon the current context object. The Property macro is an example of this.

Other macros are capable of operating on objects deeper down the context stack. The Prop-
ertyFrom macro is an example of this type.

There are also a variety of macros that push objects onto the context stack and remove them. Mac-
ros with the words "Push" and "Pop" in their names are of this variety.

TLX Expansion

Template Language and Macro Reference Guide 22

The bottommost (first) object on the stack is known as the anchor object and cannot be popped
from the stack. This ensures that macros always have some object as the context. For example,
assume that an Entity is the anchor object:

 PushOwner /* pushes the model onto the stack */

 Pop /* pops the model from the stack */

 Pop /* fails - entity is the anchor object */

An object can appear in the stack more than once. If the object happens to be the anchor object,
only its earliest appearance cannot be popped�other appearances can be popped at will. For
example, assume that an Entity is the anchor object:

 PushOwner /* pushes the model onto the stack */

 Repush("1") /* pushes entity a second time */

 Pop /* pops second occurrence of the entity */

 Pop /* pops the model from the stack */

 Pop /* fails - entity is the anchor object */

Iteration macros that operate on objects implicitly push the current iteration object onto the stack.
This frees you from having to write explicit push and pop macro calls. For example, assume that an
Entity is the anchor object:

 Property("Name") /* <- reads the entity name */

 ForEachOwnee("Attribute")

 {

 Property("Name") /* <- reads an attribute's name */

 }

 Property("Name") /* <- back to reading the entity name */

Phantom Objects

In certain processes in erwin Data Modeler, objects that are not actually in the model are simulated
so that they can be used by macros. The most notable example of this situation is when evaluating

TLX Expansion

Template Language and Macro Reference Guide 23

a TLX template for generating an Alter Script. These objects are referred to as phantom objects.
Generally, they can be treated exactly like a regular object. However, certain macros behave dif-
ferently or do not function when the context object is a phantom object. These situations are noted
in the macros' descriptions.

TLX Expansion

Template Language and Macro Reference Guide 24

Macro Overview

Template Language and Macro Reference Guide 25

Macro Overview
Each macro entry will contain the following sections describing the behavior of the macro and its
usage.

This section contains the following topics

Name
Definition
Prototype Specification
Result Specification
Breaking Changes Specification
Categories
Sample

Name

Macro names are always case-sensitive.

The following are some tips on macro names that make it easier to understand their purpose at a
glance.

Macros containing the words "Push" and "Pop" in their names alter the contents of the con-
text stack, such as PushOwner.

Macros with names ending in "From" will, if necessary, reach beyond the first object in the
context stack to find an object of the desired type, such as PropertyFrom.

Macros with names ending in "Through" will traverse a reference property on the current
context object to find the necessary context object, such as PropertyThrough.

Macros starting with a DBMS name followed by an underscore are designed to work only if
the target server matches the DBMS name, such as Access_Datatype.

Macros with a period in the middle of their name will operate only within the context of a spe-
cific iterator, such as ForEachProperty.IsInherited.

Macros with a double colon in their name will operate only in certain processes in erwin
Data Modeler, such as FE::Bucket.

Definition

This section will provide a description of the macro's behavior, plus any particular notes on using it.

Macro Overview

#o6963
#o6964
#o6965
#o6966
#o6968
#o6969
#o6970

Template Language and Macro Reference Guide 26

Prototype Specification

The prototype specification of each macro will show the full syntax available. The first term is
always the macro's name.

 MacroName

Terms in italics represent parameters to the macro. These parameters are described in the table
following the prototype signature.

Parameters are always enclosed in parentheses. The parentheses can be omitted if parameters
are optional and none are being supplied. Parameters are always separated by commas. Unless
otherwise specified, parameters to macros, other than type names, are not case-sensitive.

 MacroName(Parameter1, Parameter2)

Parameters enclosed in square brackets are optional.

 MacroName([OptionalParameter1 [, OptionalParameter2]])

If a macro can take a variable length list of parameters, it will be indicated by an ellipsis.

 MacroName(Value1[, Value2 [, …]])

Iterator macros are indicated by a trailing set of curly braces.

 MacroName(Parameter1){}

Result Specification

This subsection will list the conditions under which the macro will fail.

As the software evolves, some macros may become deprecated. The deprecation specification
indicates the level of deprecation at the time of documentation. The following describes the pos-
sible values and their meaning:

Active

The macro is not deprecated in any way.

Discouraged

The macro has been replaced by an alternate macro. You may switch to the new syntax when edit-
ing new code in order to take advantage of new capabilities or faster performance.

Macro Overview

Template Language and Macro Reference Guide 27

Macros in this status are fully supported and there is no intention to remove them from the product.
However, they may not run as efficiently as other approaches and/or may not have the same fea-
tures available.

Deprecated

The macro is deprecated and support for it will eventually be removed from the product.

Removed

The macro is no longer supported and will not function in the software.

Breaking Changes Specification

This section will describe ways in which the macro has changed from previous versions when that
change would break existing code. Generally, breaking changes are adjusted by the post-load pro-
cessors when a model is upgraded to a new version of the software. The description of the break-
ing change is provided so that you can adjust any new code you write.

Categories

This is the list of categories to which this macro is assigned by erwin Data Modeler. You can add
the macro to more categories, if you choose, by using the Macro Categories editor.

Sample

An example of using the macro will be provided in this subsection.

Macro Overview

Template Language and Macro Reference Guide 28

Standard Macros
This set comprises the bulk of the new macros in erwin Data Modeler. They are usable in all, or
almost all, processes in the product.

This section contains the following topics

Access_DatabaseName
Access_Datatype
AllowAlterDatatype
AreAllOwneesCreated
AreAllOwneesDeleted
AreStringsEqual
Choose
ClearAllGlobalFlags
ClearGlobalFlag
ClearLocalFlag
ConversionFunction
DatabaseConnection
Date
DBMSVersion
Decrement
Default
EnumProperty
EnumProperty2
Equal
Execute
ExecuteTest
Fail
ForEachFKColumn
ForEachMigratingColumn
ForEachOfType
ForEachOwnee
ForEachOwneeFrom
ForEachOwneeThrough
ForEachProperty

Standard Macros

Template Language and Macro Reference Guide 29

ForEachProperty.IsInherited
ForEachProperty.Type
ForEachProperty.Value
ForEachPropertyValue
ForEachPropertyValue.Value
ForEachReference
ForEachReference.IsInherited
ForEachReferenceFrom
ForEachReferenceThrough
ForEachReferencing
ForEachUserDefinedProperty
FormatProperty
Greater
GreaterOrEqual
HasOwnees
HasPropertyCharacteristic
IncludeFile
Increment
Integer
IsCreated
IsDefaultRITrigger
IsDeleted
IsGlobalFlagClear
IsGlobalFlagSet
IsLocalFlagSet
IsMatch
IsModified
IsNotInheritedFromUDD
IsOwnerPropertyEqual
IsOwnerPropertyFalse
IsOwnerPropertyNotEqual
IsOwnerPropertyTrue
IsPropertyEqual
IsPropertyEqualFrom
IsPropertyEqualThrough

Standard Macros

Template Language and Macro Reference Guide 30

IsPropertyFalse
IsPropertyFalseFrom
IsPropertyFalseThrough
IsPropertyModified
IsPropertyNotEqual
IsPropertyNotEqualFrom
IsPropertyNotEqualThrough
IsPropertyNotNull
IsPropertyNull
IsPropertyReordered
IsPropertyTrue
IsPropertyTrueFrom
IsPropertyTrueThrough
IterationCount
Left
Less
LessOrEqual
ListSeparator
Lookup
LookupProperty
Loop
LowerCase
Mid
Modulo
NotEqual
ObjectId
ObjectType
OnceForObject
OwnerProperty
OwnerQuotedName
Pad
Pop
Progress_ColumnDecimals
Progress_ColumnFormat
ProperCase

Standard Macros

Template Language and Macro Reference Guide 31

Property
PropertyFrom
PropertyThrough
PropertyValueCount
PropertyWithDefault
PushFKViewRelationship
PushNewImage
PushOldImage
PushOwner
PushReference
PushTopLevelObject
QuotedName
QuotedNameThrough
Remove
RemoveInteger
RemoveString
Repush
RepushType
Right
Separator
Set
SetGlobalFlag
SetInteger
SetLocalFlag
SetString
ShouldGenerate
String
Substitute
Switch
TableHasFilteredIndex
Trim
UpperCase
Value

Standard Macros

Template Language and Macro Reference Guide 32

Access_DatabaseName

Description

This macro evaluates to the database name for an Access target server.

Prototype

 Access_DatabaseName

Result

This macro will fail in the following circumstances:

The target database is not Access.

Deprecation Level

Active

Breaking Changes

None

Categories

DBMS Specific Macros

Sample

Template

 "Set ERwinDatabase = ERwinWorkspace.OpenDatabase("
 Access_DatabaseName ")"

Result

 Set ERwinDatabase = ERwinWorkspace.OpenDatabase("sERwinDatabase")

Access_Datatype

Description

Standard Macros

Template Language and Macro Reference Guide 33

This macro converts the erwin Data Modeler data type to a constant usable by an Access data-
base.

Prototype

 Access_Datatype

Result

This macro will fail in the following circumstances:

The target database is not Access.

Deprecation Level

Active

Breaking Changes

None

Categories

DBMS Specific Macros

Sample

Assume the current context is the Attribute object E_1.a in the following illustration:

Template

 "Set ERwinField = ERwinTableDef.CreateField("
 "\"" Property("Physical_Name") "\" , " Access_Datatype ")"

Result

Standard Macros

Template Language and Macro Reference Guide 34

 Set ERwinField = ERwinTableDef.CreateField("a", DB_INTEGER)

AllowAlterDatatype

Description

This macro determines if a change in an attribute's data type can be handled via an alter script.

Prototype

 AllowAlterDatatype

Result

This macro will fail in the following circumstances:

The database does not support alter for the data type change.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Assume the current context is an attribute whose datatype has been changed from smallint to
integer.

Template

 [AllowAlterDatatype
 "This can be altered"
]

Result

 This can be altered

Standard Macros

Template Language and Macro Reference Guide 35

AreAllOwneesCreated

Description

This macro determines if all objects of the specified type that are owned by the current context
object have been created in the current session.

Prototype

 AreAllOwneesCreated(OwneeType [, Option1 [, OptionN [, …]]])

Parameter Status Description

OwneeType Req The type of owned object to test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

Option Meaning

"reverse" If this option is present, the macro will fail if all ownees of the specified type
are created in the current session.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

There exists an object of the specified type owned by the context object that was not created
in the current session.

All ownees of the specified type were created in the current session and the �reverse�
option was present.

No objects of the specified type are owned by the context object.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 36

Breaking Changes

None

Categories

Alter Macros

Sample

Assume the current context is a key group that had all members deleted.

Template

 [
 /* This makes sure at least one was present before */
 AreAllOwneesCreated("Key Group Member", "reverse")
 /* This makes sure none are left */
 AreAllOwneesDeleted("Key Group Member")
 "Emit a DROP statement"

Result

 Emit a DROP statement

AreAllOwneesDeleted

Description

This macro determines if all objects of the specified type that are owned by the current model have
been deleted in the current session.

Prototype

 AreAllOwneesDeleted(OwneeType [, Option1 [, OptionN [,…]]])

Parameter Status Description

OwneeType Req The type of owned object to test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

Standard Macros

Template Language and Macro Reference Guide 37

"reverse"

If this option is present, the macro will fail if all ownees of the specified type are created in
the current session.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

There exists an object of the specified type owned by the context object.

At least one object of the specified type owned by the context object does not appear in the
list of objects deleted in the current session.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Assume the current context is a key group that had all members deleted.

Template

 [
 /* This makes sure at least one was present before */
 AreAllOwneesCreated("Key Group Member", "reverse")
 /* This makes sure none are left */
 AreAllOwneesDeleted("Key Group Member")
 "Emit a DROP statement"
]

Result

 Emit a DROP statement

Standard Macros

Template Language and Macro Reference Guide 38

AreStringsEqual

Description

This determines if one string is equal to another.

Prototype

 AreStringsEqual(LeftString, RightString [, Option])

Parameter Status Description

LeftString Req The left string in the test.

RightString Req The right string in the test.

Option Opt By default the comparison is case-sensitive. If this parameter is
set to "NoCase" the comparison will be done in a case-insens-
itive manner. The word "NoCase" is not case sensitive.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The two strings are not equal.

Deprecation Level

Deprecated

The Equal macro should be used.

Breaking Changes

None

Categories

String Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 39

 Set("Value1", "aaa")
 Set("Value2", "bbb")
 @if(AreStringsEqual(Value("Value1"), Value("Value2")))
 {
 "Yes"
 }
 %else
 {
 "No"
 }

Result

No

Choose

Description

This macro, in conjunction with the Switch and Default macros, tests a predicate against a range of
values and executes a block when a match is found.

The block associated with this macro will be evaluated if the predicate matches and no previous
Choose or Default blocks have evaluated successfully.

Prototype

 Choose(Value) {}

Parameter Status Description

Value Req The predicate of the Switch macro will be tested against this
value.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 40

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the context is the primary key of an entity.

Template

 Switch(Left(Property("Key_Group_Type"), "2"))
 {
 Choose("PK")
 {
 "This is a primary key."
 }
 Choose("AK")
 {
 "This is an alternate key."
 }
 Default
 {
 "This is an inversion entry."
 }
 Choose("XX")
 {
 /* This block will never execute, because a preceding block
 will always evaluate successfully due to the presence of the
 Default macro. */
 }
 }

Result

This is a primary key.

ClearAllGlobalFlags

Description

Standard Macros

Template Language and Macro Reference Guide 41

This clears all flags set with SetGlobalFlag.

Prototype

 ClearAllGlobalFlags

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

 SetGlobalFlag("Flag1")
 SetGlobalFlag("Flag2")
 @if(IsGlobalFlagSet("Flag1"))
 {
 "Flag1 is set.\n"
 }
 @if(IsGlobalFlagSet("Flag2"))
 {
 "Flag2 is set.\n"
 }
 ClearAllGlobalFlags
 @if(IsGlobalFlagSet("Flag1"))
 {
 "Flag1 is still set.\n"
 }
 @if(IsGlobalFlagSet("Flag2"))
 {

Standard Macros

Template Language and Macro Reference Guide 42

 "Flag2 is still set."
 }

Result

 Flag1 is set.
 Flag2 is set.

ClearGlobalFlag

Description

This clears the named global flag set with SetGlobalFlag.

Prototype

 ClearGlobalFlag(Flag)

Parameter Status Description

Flag Req The name of the flag to clear.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 43

 SetGlobalFlag("Flag1")
 SetGlobalFlag("Flag2")
 @if(IsGlobalFlagSet("Flag1"))
 {
 "Flag1 is set.\n"
 }
 @if(IsGlobalFlagSet("Flag2"))
 {
 "Flag2 is set.\n"
 }
 ClearGlobalFlag("Flag1")
 @if(IsGlobalFlagSet("Flag1"))
 {
 "Flag1 is still set.\n"
 }
 @if(IsGlobalFlagSet("Flag2"))
 {
 "Flag2 is still set."
 }

Result

 Flag1 is set.
 Flag2 is set.
 Flag2 is still set.

ClearLocalFlag

Description

This clears the named global flag set with SetLocalFlag.

Prototype

 ClearLocalFlag(Flag [, Depth])

Parameter Status Description

Flag Req The name of the flag to clear.

Standard Macros

Template Language and Macro Reference Guide 44

Depth Opt This will clear the named local flag from the stack entry Depth
levels above the current entry.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

 SetLocalFlag("Flag1")
 PushOwner
 SetLocalFlag("Flag2�)
 ClearLocalFlag("Flag1", "1")
 ClearLocalFlag("Flag2")
 @ifnot(IsLocalFlagSet("Flag2"))
 {
 "Flag2 was cleared.\n"
 }
 Pop
 @ifnot(IsLocalFlagSet("Flag1"))
 {
 "Flag1 was cleared.\n"
 }

Result

Standard Macros

Template Language and Macro Reference Guide 45

 Flag2 was cleared.
 Flag1 was cleared.

ConversionFunction

Description

This macro prompts you for a conversion function for a column data type change. This occurs
when the Alter Script processing determines that it will drop and recreate the table.

Prototype

 ConversionFunction

Result

This macro will fail in the following circumstances:

An appropriate conversion function cannot be determined.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Assume that a table was modified from the left illustration to the right illustration.

Standard Macros

Template Language and Macro Reference Guide 46

If you ran the Alter Script process, pressed Preview and then Save Data, they would see a dialog
something like the following.

DatabaseConnection

Description

This evaluates to one of the connection information strings

Prototype

 DatabaseConnection(Option)

Parameter Status Description

Option Req A keyword indicating the desired string.

The options available are found in the following table. These terms are not case-sensitive.

Option Meaning

"database" The database name

"server" The server name

"user" The user name

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 47

The required parameter is not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

None.

Sample

Template

 DatabaseConnection("user")

Result

 my_user_name

Date

Description

This evaluates to the current time stamp.

Prototype

 Date([Format])

Parameter Status Description

Format Opt This may be either a format string as specified in the table below
or the word "System".

If the latter is supplied, the format string held by the operating
system for the current locale is used. If no parameter is sup-
plied, the default string used is:

"%d %b %Y %I:%M:%S %p"

Standard Macros

Template Language and Macro Reference Guide 48

The format string consists of a series of specifiers that indicate a component of a full date/time
value, plus the formatting for that value. For full documentation of all of the formatting options avail-
able, the documentation for the C Runtime function strftime() function should be consulted. This
documentation can be located on the Web at a number of sites, one example of which is:
http://msdn2.microsoft.com/en-US/library/fe06s4ak.aspx.

The following provides an overview of some of the more common specifiers.

%a

Abbreviated weekday name.

%A

Full weekday name.

%b

Abbreviated month name.

%B

Full month name.

%c

Date and time representation appropriate for locale.

%#c

Long date and time representation, appropriate for current locale. For example: "Tuesday,
March 14, 1995, 12:41:29".

%d

Day of month as a decimal number (01 � 31). If a # sign is inserted after the % sign, leading
zeros are suppressed.

%H

Hour in 24-hour format (00 � 23). If a # sign is inserted after the % sign, leading zeros are
suppressed.

%I

Hour in 12-hour format (01 � 12). If a # sign is inserted after the % sign, leading zeros are
suppressed.

%j

Day of year as a decimal number (001 � 366). If a # sign is inserted after the % sign, leading
zeros are suppressed.

Standard Macros

Template Language and Macro Reference Guide 49

%m

Month as a decimal number (01 � 12). If a # sign is inserted after the % sign, leading zeros
are suppressed.

%M

Minute as a decimal number (00 � 59). If a # sign is inserted after the % sign, leading zeros
are suppressed.

%p

Current locale's AM/PM indicator for a 12-hour clock.

%S

Second as decimal number (00 � 59). If a # sign is inserted after the % sign, leading zeros
are suppressed.

%U

Week of year as decimal number, with Sunday as first day of week (00 � 53). If a # sign is
inserted after the % sign, leading zeros are suppressed.

%w

Weekday as decimal number (0 � 6; Sunday is 0). If a # sign is inserted after the % sign,
leading zeros are suppressed.

%W

Week of year as decimal number, with Monday as first day of week (00 � 53). If a # sign is
inserted after the % sign, leading zeros are suppressed.

%x

Date representation for current locale.

%#x

Long date representation, appropriate to current locale. For example: "Tuesday, March 14,
1995".

%X

Time representation for current locale.

%y

Year without century as a decimal number (00 � 99). If a # sign is inserted after the % sign,
leading zeros are suppressed.

Standard Macros

Template Language and Macro Reference Guide 50

%Y

Year with century as a decimal number. If a # sign is inserted after the % sign, leading zeros
are suppressed.

%z, %Z

Either the time-zone name or time zone abbreviation, depending on registry settings. No
characters if time zone is unknown.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Template

 Date "\n"
 Date("system") "\n"
 Date("%b %d, %Y")

Result

 03 Oct 2006 02:01:24 PM
 Tuesday, October 03, 2006
 Oct 03, 2006

DBMSVersion

Description

Standard Macros

Template Language and Macro Reference Guide 51

This macro determines if the version of the database specified for the current model falls into a spe-
cific range. Version numbers should be specified in the format:

<Major Version Number>.<Minor Version Number>

If no minor version is specified, then it is assumed to be zero.

Prototype

 DBMSVersion(StartVersion [, StopVersion])

Parameter Status Description

Start Version Req This identifies the lowest acceptable version number.

Stop Version Opt This identifies the highest acceptable version number. If this
value is not supplied, only the lower version is tested.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The model has not target database set.

The specified parameters cannot be parsed.

The version of the database on the model is outside the specified range.

Deprecation Level

Active

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the context is a deleted entity in Version 9:

Template

Standard Macros

Template Language and Macro Reference Guide 52

 "DROP TABLE " Property("Physical_Name") " CASCADE CONSTRAINTS"
 [DBMSVersion("10") " PURGE"]

Result

 DROP TABLE customer CASCADE RESTRAINTS

Assume the context is a deleted entity in Version 10:

Template

 "DROP TABLE " Property("Physical_Name") " CASCADE CONSTRAINTS"
 [DBMSVersion("10") " PURGE"]

Result

 DROP TABLE customer CASCADE RESTRAINTS PURGE

Decrement

Description

This macro decrements the value in the specified variable. The variable is assumed to contain an
integer value. If it does not, the value is coerced to zero and the decrement occurs. If the variable
does not exist, it is created first, with a value of zero.

Prototype

 Decrement(VariableName)

Parameter Status Description

VariableName Req The name of the variable.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 53

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("Var1", "2")
 Decrement("Var1") Value("Var1") "\n"
 Decrement("Var1") Value("Var1") "\n"
 /* Demonstrate data type coercion */
 Set("Var2", "foo")
 Decrement("Var2") Value("Var2") "\n"
 /* Demonstrate auto-creation */
 Decrement("Var3") Value("Var3")

Result

 1
 0
 -1
 -1

Default

Description

This macro, in conjunction with the Switch and Choose macros, tests a predicate against a range
of values and executes a block when a match is found.

The block associated with this macro will be evaluated if no previous Choose blocks have eval-
uated successfully.

Prototype

 Default {}

Result

This macro always succeeds.

Standard Macros

Template Language and Macro Reference Guide 54

Deprecation Level

Active

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the context is an inversion entry of an entity.

Template

 Switch(Left(Property("Key_Group_Type"), "2"))
 {
 Choose("PK")
 {
 "This is a primary key."
 }
 Choose("AK")
 {
 "This is an alternate key."
 }
 Default
 {
 "This is an inversion entry."
 }
 Choose("XX")
 {
 /* This block will never execute, because a preceding block
 will always evaluate successfully */
 }
 }

Result

This is an inversion entry.

Standard Macros

Template Language and Macro Reference Guide 55

EnumProperty

Description

This is a lookup macro that evaluates to a specified string based upon a zero-based integer value
contained in a property of the current context object. The integer values are assumed to be in a
contiguous range starting at zero and positive in value.

Prototype

 EnumProperty(Property, Value0 [, Value1 [, …]])

Parameter Status Description

Property Req The property to examine.

Value0 Req The value to return if the property has the value of '0'.

Value1 � ValueN Opt The value(s) to return if the property has the value of '1' to
'N'.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The specified property does not exist or it has a null value.

The list of replacement strings is not large enough to accommodate the value found in the
property.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Standard Macros

Template Language and Macro Reference Guide 56

Sample

Assume the context is the table in the following illustration and the target type is Access.

Template

 ForEachOwnee("Attribute")
 {
 EnumProperty("Null_Option_Type", "NULL", "NOT NULL") "\n"
 }

Result

 NOT NULL
 NULL

EnumProperty2

Description

This is a lookup macro that evaluates to a specified string based upon a zero-based integer value
contained in a property of the current context object. The values in the property are offset from
zero by the amount specified in Offset. For example, if the value of Offset is '10', then the first string
will correspond to a property value of '10', the second to the value '11' and so on. The integer val-
ues are assumed to be in a contiguous range and result in positive values once the offset is
applied.

Prototype

 EnumProperty2(Property, Offset, Value0 [, Value1 [, …]])

Standard Macros

Template Language and Macro Reference Guide 57

Parameter Status Description

Property Req The property to examine.

Offset Req The amount to offset the value in the property.

Value0 Req The value to return if the property has the adjusted value of
'0'.

Value1 � ValueN Opt The value(s) to return if the property has the adjusted value
of '1' to 'N'.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The specified property does not exist or it has a null value.

The list of replacement strings is not large enough to accommodate the value found in the
property.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the context is a logical/physical model.

Template

 EnumProperty2("Type", "1", "Logical", "Physical",
 "Logical/Physical")

Result

 Logical/Physical

Standard Macros

Template Language and Macro Reference Guide 58

Equal

Description

This determines if one string is equal to another.

Prototype

 Equal(LeftString, RightString [, Option])

Parameter Status Description

LeftString Req The left string in the test.

RightString Req The right string in the test.

Option Opt Option keyword

The options available are found in the following.

"no_case"

By default the comparison is case-sensitive. If this option is set the comparison will be done
in a case-insensitive manner.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The two strings are not equal.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Standard Macros

Template Language and Macro Reference Guide 59

Assume the context is the following table:

Template

 @if(Equal(Property("Name"), "e_1"))
 {
 "Name is exactly 'e_1'.\n"
 }
 @else
 {
 "Name is not exactly 'e_1'.\n"
 }
 @if(Equal(Property("Name"), "e_1", "no_case"))
 {
 "Name is case-insensitively like 'e_1'."
 }

Result

 Name is not exactly 'e_1'.
 Name is case-insensitively like 'e_1'.

Execute

Description

This macro allows a piece of named template code to be reused. It will load a named template from
a template file and expand it in the current context.

This macro will work only in processes that make use of named templates and template files.
Currently, these are Schema Generation (Forward Engineering) and Alter Script Generation.
More information on template files can be found in the document Editing Forward Engineering
Templates.pdf.

Standard Macros

Template Language and Macro Reference Guide 60

If the FileName parameter is not supplied, the macro looks for the template in the current template
file. The current template file is the initial file bound to the TLX engine by the erwin Data Modeler
process being run.

If the FileName parameter is supplied, the macro looks for the template in the specified file.

Prototype

 Execute(NamedTemplate [, FileName [, Param1 [, Param2 [, …]]]])

Parameter Status Description

NamedTemplate Req This is the name of the template entry in the file.

FileName Opt This is the name of the template file containing the entry,
if it is not the current file. An empty string also indicates
the current file.

If the specified file does not contain a path specification,
the file is assumed to be in the same location as the cur-
rent template file.

Param1 � ParamN Opt Parameters to the executed template. The template being
invoked can contain replacement tokens�Param1 will be
substituted for �%1�, Param2 will be substituted for
�%2�, and so on.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The template cannot be located.

The template cannot be evaluated.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 61

Include Macros

Sample

The following illustrates a hypothetical template file for constructing very basic CREATE TABLE
statements. Assume that the table in the following illustration is the current context the process is
using:

Template

 SPItemBegin = Create Entity
 "CREATE TABLE " Property("Name") "\n"
 "(\n"
 ForEachOwnee("Attribute")
 {
 ListSeparator(",\n")
 "\t" Execute("Clause: Column Properties")
 }
 ")"
 SPItemEnd
 SPItemBegin = Clause: Column Properties
 Property("Physical_Name") " " Property("Physical_Data_Type")
 SPItemEnd

Result

 CREATE TABLE E_1
 (
 a INTEGER,
 b CHAR(18)
)

Standard Macros

Template Language and Macro Reference Guide 62

ExecuteTest

Description

This macro allows a piece of named template code to be reused. It will load a named template from
a template file and expand it in the current context. If the result expands to the text �Success�, the
macro will succeed. Otherwise, it will fail.

This macro will work only in processes that make use of named templates and template files.
Currently, these are Schema Generation (Forward Engineering) and Alter Script Generation.
More information on template files can be found in the document Editing Forward Engineering
Templates.pdf.

If the FileName parameter is not supplied, the macro looks for the template in the current template
file. The current template file is the initial file bound to the TLX engine by the erwin Data Modeler
process being run.

If the FileName parameter is supplied, the macro looks for the template in the specified file.

Prototype

 ExecuteTest(NamedTemplate [, FileName [, Param1 [, Param2 [,
…]]]])

Parameter Status Description

NamedTemplate Req This is the name of the template entry in the file.

FileName Opt This is the name of the template file containing the entry,
if it is not the current file. An empty string also indicates
the current file.

If the specified file does not contain a path specification,
the file is assumed to be in the same location as the cur-
rent template file.

Param1 � ParamN Opt Parameters to the executed template. The template being
invoked can contain replacement tokens�Param1 will be
substituted for �%1�, Param2 will be substituted for
�%2�, and so on.

Standard Macros

Template Language and Macro Reference Guide 63

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The template cannot be located.

The template cannot be evaluated.

The template does not expand to the value �Success�.

Deprecation Level

Active

Breaking Changes

None

Categories

Include Macros

Sample

The following illustrates a hypothetical template file for constructing very basic CREATE TABLE
statements. Assume that the table in the following illustration is the current context the process is
using.

Template

 SPItemBegin = Create Entity
 "CREATE TABLE " Property("Name") "\n"
 "(\n"

Standard Macros

Template Language and Macro Reference Guide 64

 ForEachOwnee("Attribute")
 {
 ListSeparator(",\n")
 "\t" ExecuteTest("Ignore Logical Only")
 }
 ")"
 SPItemEnd
 SPItemBegin = Ignore Logical Only
 @ifnot(Property("Is_Logical_Only")){ "Success" }
 SPItemEnd

Result

 CREATE TABLE E_1
 (
 a INTEGER,
 b CHAR(18)
)

Fail

Description

This is a debugging macro that always fails. It can be used to debug conditional blocks.

Prototype

 Fail

Result

This macro always fails.

Deprecation Level

Active

Breaking Changes

None

Categories

Sample

Standard Macros

Template Language and Macro Reference Guide 65

Template

 [Fail "This should never emit"]

Result

ForEachFKColumn

Description

This iterates across the instances of a specific type of object.

Prototype

 ForEachFKColumn{}

Result

This macro succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the following model and the foreign key in E_2 is the context object:

Standard Macros

Template Language and Macro Reference Guide 66

Template

 ForEachFKColumn
 {
 PushOwner Property("Name") Pop "." Property("Name") "\n"
 }

Result

 E_2.a
 E_2.b
 E_2.c

ForEachMigratingColumn

Description

This iterates across the instances of a specific type of object.

Prototype

 ForEachMigratingColumn{}

Result

This macro succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the following model and the foreign key in E_2 is the context object:

Standard Macros

Template Language and Macro Reference Guide 67

Template

 ForEachMigratingColumn
 {
 PushOwner Property("Name") Pop "." Property("Name") "\n"
 }

Result

 E_1.a
 E_1.b
 E_1.c

ForEachOfType

Description

This iterates across the instances of a specific type of object.

Prototype

 ForEachOfType(TypeName [, Category]){}

Parameter Status Description

TypeName Req The type of object to traverse.

Category Opt A filter on what type of objects should be returned. If this value
is not specified, "active" is assumed.

The Category values available are found in the following.

Standard Macros

Template Language and Macro Reference Guide 68

"active"

Only actual, non-phantom objects of the specified type are returned.

"deleted"

Only phantom objects representing deleted objects of the specified type are returned.

"modified"

Only phantom objects representing the pre-image of modified objects of the specified type
are returned.

"phantom"

Only phantom objects, both deleted and modified, of the specified type are returned.

"all"

All phantom and non-phantom objects of the specified type are returned.

Result

This macro succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume a model that, when loaded, had three Entity objects: E_1, E_2 and E_3. Assume E_2 was
deleted, E_3 was renamed to New_3, and E_4 was created.

Template

 "Active entities: "
 ForEachOfType("Entity")
 {
 ListSeparator(", ")
 Property("Name")

Standard Macros

Template Language and Macro Reference Guide 69

 }
 "\nDeleted entities: "
 ForEachOfType("Entity", "deleted")
 {
 ListSeparator(", ")
 Property("Name")
 }
 "\nModified entities: "
 ForEachOfType("Entity", "modified")
 {
 ListSeparator(", ")
 Property("Name")
 }

Result

 Active entities: E_1, New_3, E_4
 Deleted entities: E_2
 Modified entities: E_3

ForEachOwnee

Description

This iterates across the ownee list of the current context object.

When the current context object is a phantom object representing the old state of a modified
object, the ownees reported will be those present in the old state, not the current set of ownees.

Prototype

 ForEachOwnee([TypeName [, SortBy [, Option1 [, Option2 [,…]]]]])
{}

Parameter Status Description

TypeName Opt If a type name is provided, the iteration will be filtered to pass
only objects of that type. If this is not provided, all owned
objects will be returned.

SortProperty Opt The property to use as the basis of sorting. If this is not

Standard Macros

Template Language and Macro Reference Guide 70

provided or is an empty string, no sorting will take place and
the objects will appear in whatever internal order is held in
erwin Data Modeler.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following.

"owner_sort"

If this option is present, SortProperty is assumed to be found on the owning (context) object
and to be in the form of a vector of ownee ids. If the owning object does not have the spe-
cified property, no sorting will take place. If this is not present, the property is assumed to be
found on the ownee objects and they will be sorted based upon its value.

"reverse_sort"

If this option is present, the sorting will be reversed.

"require_one"

If this option is present, at least one iteration must occur or the macro will fail.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the context is the table in the following illustration, which is shown in the Physical Order
display level:

Standard Macros

Template Language and Macro Reference Guide 71

Template

 ForEachOwnee("Attribute", "Physical_Columns_Order_Ref", "owner_
sort")
 {
 Property("Physical_Name") "\n"
 }
 "\n"
 ForEachOwnee("Attribute", "Name")
 {
 Property("Physical_Name") "\n")
 }

Result

 b
 a
 a
 b

ForEachOwneeFrom

Description

This iterates across the ownee list on the first object in the context stack with the specified type.

Prototype

 ForEachOwneeFrom(ContextType [, TypeName [, SortBy [, Option1
 [, Option2 [,…]]]]]){}

Standard Macros

Template Language and Macro Reference Guide 72

Parameter Status Description

ContextType Req The type of object to locate on the context stack.

TypeName Opt If a type name is provided, the iteration will be filtered to pass
only objects of that type. If this is not provided, all owned
objects will be returned.

SortProperty Opt The property to use as the basis of sorting. If this is not
provided or is an empty string, no sorting will take place and
the objects will appear in whatever internal order is held in
erwin Data Modeler.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

Result

This macro will fail in the following circumstances:

The current object is a phantom object.

An object of that type does not exist on the context stack.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

To illustrate the difference between this and the ForEachOwnee macro, assume that context
object is E_1 in the following illustration

Standard Macros

Template Language and Macro Reference Guide 73

When the following template code is expanded, both loops produce the same result because an
Entity object is current on the stack.

Template

 ForEachOwnee("Attribute")
 {
 Property("Physical_Name") "\n"
 }
 "\n"
 ForEachOwneeFrom("Entity", "Attribute")
 {
 Property("Physical_Name") "\n"
 }

Result

 a
 b

Standard Macros

Template Language and Macro Reference Guide 74

 a
 b

However, if we introduce other objects onto the context stack, the behavior of the two iterators
changes. For example, if we introduce Relationship onto the stack above the Entity, using the
ForEachReference macro, the stack will appear as follows:

Since Relationship objects don�t own Attribute objects, the first iterator will not traverse any
objects. The second iterator will still locate the Entity object and traverse its ownees.

Template

 ForEachReference("Parent_Relationships_Ref")
 {
 ForEachOwnee("Attribute")
 {
 Property("Physical_Name") "\n"
 }
 "\n"
 ForEachOwneeFrom("Entity", "Attribute")
 {
 Property("Physical_Name") "\n"
 }
 }

Result

 a
 b

Standard Macros

Template Language and Macro Reference Guide 75

ForEachOwneeThrough

Description

This iterates across the ownee list on the object pointed to by the specified scalar reference prop-
erty on the current context object.

Prototype

 ForEachOwneeThrough(ReferenceProperty [, TypeName [, SortBy
 [, Option1 [, Option2 [,…]]]]]){}

Parameter Status Description

ReferenceProperty Req The reference property to use to locate the desired
owning object.

TypeName Opt If a type name is provided, the iteration will be filtered
to pass only objects of that type. If this is not provided,
all owned objects will be returned.

SortProperty Opt The property to use as the basis of sorting. If this is not
provided or is an empty string, no sorting will take
place.

Option1 � OptionN Opt One or more option keywords. They can appear in any
order and are not case-sensitive.

The options available are found in the following.

"owner_sort"

If this option is present, SortProperty is assumed to be found on the owning (context) object
and to be in the form of a vector of ownee ids. If the owning object does not have the spe-
cified property, no sorting will take place. If this is not present, the property is assumed to be
found on the ownee objects and they will be sorted based upon its value.

"reverse_sort"

If this option is present, the sorting will be reversed.

Standard Macros

Template Language and Macro Reference Guide 76

"require_one"

If this option is present, at least one iteration must occur or the macro will fail.

Result

This macro will fail in the following circumstances:

The current object is a phantom object.

The reference property does not exist.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the current context object is the Relationship in the following illustration

Template

 ForEachOwneeThrough("Parent_Entity_Ref", "Attribute")
 {
 Property("Physical_Name") "\n"
 }

Result

Standard Macros

Template Language and Macro Reference Guide 77

 a
 b

ForEachProperty

Description

This is a special-purpose macro generally used in components that produce dumps of models. It
will iterate across the properties of an object. Special sub-macros are then available to retrieve
information about the property.

The context object is not changed by this iterator.

Prototype

 ForEachProperty([Option1 [, Option2 [, …]]]){}

Parameter Status Description

Option1 � OptionN Opt One or more option keywords. These can appear in any
order.

The options available are found in the following table. These terms are not case-sensitive.

"type_sort"

The properties will be sorted by their type.

"all"

Pass all types of properties. This is the default setting and will override conflicting options.

"user_defined"

Pass only user-defined properties.

"built_in"

Pass only built-in properties.

Result

This macro will fail in the following circumstances:

The context object is a phantom object.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 78

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume that the current context is the M1 object Domain (the object defining the metadata for
Domain instances in the model) and we want to see what tags are applied to it.

Template

 /* List the tags, putting inherited ones in HTML italics */
 ForEachProperty("user_defined", "types_sort")
 {
 [ForEachProperty.IsInherited "<i>"]
 ForEachProperty.Type
 [ForEachProperty.IsInherited "</i>"] "="
 ForEachProperty.Value "\n"
 }

Result

 <i>HasUdpEditor</i>=true
 <i>IsExplorerSuppressed</i>=true
 IsLogical=true
 Is_Physical=true
 Legacy_MM_Order=7
 Physical_Name=Domain

ForEachProperty.IsInherited

Description

This is a special-purpose macro is that is usable only inside of a ForEachProperty iterator, and
then only when the context object is an M1 (metadata) object.

It will indicate if the property was defined on the context object or inherited from a parent M1 object.

Prototype

Standard Macros

Template Language and Macro Reference Guide 79

 ForEachProperty.IsInherited

Result

This macro will fail in the following circumstances:

It is not executed inside the proper containing iterator.

The property is not inherited.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

See the example under the ForEachProperty macro.

ForEachProperty.Type

Description

This is a special-purpose macro is that is usable only inside of a ForEachProperty iterator, and
then only when the context object is an M1 (metadata) object.

It will evaluate to the type name of the property.

Prototype

 ForEachProperty.Type

Result

This macro will fail in the following circumstances:

It is not executed inside the proper containing iterator.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 80

Breaking Changes

None

Categories

Iterator Macros

Sample

See the example under the ForEachProperty macro.

ForEachProperty.Value

Description

This is a special-purpose macro is that is usable only inside of a ForEachProperty iterator, and
then only when the context object is an M1 (metadata) object.

It will evaluate to the value of the property.

This macro will fail if:

It is not executed inside the proper containing iterator.

Prototype

 ForEachProperty.Value([NullString])

Parameter Status Description

NullString Opt The string to emit if the property's value is a NULL. If this is not
specified, an empty string will be emitted.

Result

This macro will fail in the following circumstances:

Deprecation Level

Active

Breaking Changes

None

Standard Macros

Template Language and Macro Reference Guide 81

Categories

Iterator Macros

Sample

See the example under the ForEachProperty macro.

ForEachPropertyValue

Description

This iterates across the values present in the specified property on the current context object.

The context object is not changed by this iterator.

Prototype

 ForEachProperty(Property [, Option1 [, …]]]){}

Parameter Status Description

Property Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. These can appear in any
order.

The options available are found in the following table. These terms are not case-sensitive.

"new_only"

On a modified object, only traverse the new values.

"old_only"

On a modified object, only traverse the old values.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The context object is a phantom object.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 82

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

The following example traverses the old and new values of a Partition object, merging the old val-
ues and splitting out the new values.

Template

 IsPropertyModified("Partition_Values")
 [
 ForEachPropertyValue("Partition_Values", "old_only")
 {
 "ALTER PARTITION FUNCTION " Property("Name") "() "
 "\nMERGE RANGE (" ForEachPropertyValue.Value ")"
 FE::EndOfStatement
 }
]
 [
 ForEachPropertyValue("Partition_Values", "new_only")
 {
 "ALTER PARTITION FUNCTION " Property("Name") "() "
 "\nSPLIT RANGE (" ForEachPropertyValue.Value ")"
 FE::EndOfStatement
 }
]

ForEachPropertyValue.Value

Description

This is a special-purpose macro is that is usable only inside of a ForEachProperty iterator, and
then only when the context object is an M1 (metadata) object.

It will evaluate to the value of the property.

Standard Macros

Template Language and Macro Reference Guide 83

This macro will fail if:

It is not executed inside the proper containing iterator.

Prototype

 ForEachPropertyValue.Value

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

See the example under the ForEachPropertyValue macro.

ForEachReference

Description

This iterates across the objects listed in the specified property on the current context object.

Prototype

 ForEachReference(Property, [Option1 [, Option2 [, …]]]){}

Parameter Status Description

Property Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. These can appear in any
order.

Standard Macros

Template Language and Macro Reference Guide 84

The options available are found in the following table.

"name_sort"

The objects will be sorted according to the 'Name' property in ascending order.

"flatten"

When the context objects exist in the M1 (metadata) layer of the model this option will cause
the values on parent objects to be pushed down to the child objects. Do not use this when
the macro is employed in the context of an M0 (data) model as unpredictable results will
occur.

"exact"

This will cause the vector of references to be traversed exactly as they are found. Normally,
duplicates are suppressed; this changes that behavior. This option will cause the "name_
sort" and "flatten" options to be ignored, if they are specified.

Result

This macro will fail in the following circumstances:

The specified parameters are not provided.

The specified property is not found on the context object.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the current context is a Subject Area object containing the tables shown in the following
illustration:

Standard Macros

Template Language and Macro Reference Guide 85

Template

 ForEachReference("Referenced_Entities_Ref")
 {
 Property("Name") "\n"
 }

Result

 E_1
 E_2
 E_3

ForEachReference.IsInherited

Description

This is a special-purpose macro is that is usable only inside of a ForEachReference iterator, and
then only when the context object is an M1 (metadata) object.

It will indicate if the value in the reference property vector was defined on the context object or
inherited from a parent M1 object.

Prototype

 ForEachReference.IsInherited

Result

This macro will fail in the following circumstances:

It is not executed inside the proper containing iterator.

The value in the reference vector is not inherited.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 86

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume that the current context is the M1 object Domain (the object defining the metadata for
Domain instances in the model) and we want to see object types can own it.

Template

 ForEachReference("Valid_Owners_Ref", "name_sort")
 {
 Property("Name") "\n"
 }

Result

 Model__owns__Domain

ForEachReferenceFrom

Description

This iterates across the objects listed in the specified property on the first object of the specified
type found on the context stack.

Prototype

 ForEachReferenceFrom(ContextType, Property, [Option1 [, Option2
 [, …]]]){}

Parameter Status Description

ContextType Req The type of object to locate on the context stack.

Property Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. These can appear in any
order.

Standard Macros

Template Language and Macro Reference Guide 87

The options available are found in the following table.

"name_sort"

The objects will be sorted according to the 'Name' property in ascending order.

"flatten"

When the context objects exist in the M1 (metadata) layer of the model this option will cause
the values on parent objects to be pushed down to the child objects. Do not use this when
the macro is employed in the context of an M0 (data) model as unpredictable results will
occur.

Result

This macro will fail in the following circumstances:

The specified parameters are not provided.

There is no context object of the specified type.

The specified property is not found on the context object.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume that the current context is E_2 in the following illustration, and that E_2 owns a trigger:

Template

 ForEachOwnee("Trigger")
 {

Standard Macros

Template Language and Macro Reference Guide 88

 ForEachReferenceFrom("Entity", "Parent_Relationships_Ref")
 {
 ListSeparator("\n")
 Property("Physical_Name")
 }
 }

Result

 R_2
 R_3

ForEachReferenceThrough

Description

This iterates across the objects listed in the specified property on the object pointed to by the spe-
cified scalar reference property on the current context object

Prototype

 ForEachReferenceFrom(ReferenceProperty, Property, [Option1
 [, Option2 [, …]]]){}

Parameter Status Description

ReferenceProperty Req The reference property to use to locate the desired
owning object.

Property Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. These can appear in
any order.

The options available are found in the following table.

"name_sort"

The objects will be sorted according to the 'Name' property in ascending order.

"flatten"

Standard Macros

Template Language and Macro Reference Guide 89

When the context objects exist in the M1 (metadata) layer of the model this option will cause
the values on parent objects to be pushed down to the child objects. Do not use this when
the macro is employed in the context of an M0 (data) model as unpredictable results will
occur.

Result

This macro will fail in the following circumstances:

The specified parameters are not provided.

There is no context object of the specified type.

The specified property is not found on the context object.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume that the current context is R_2 in the following illustration:

Template

 ForEachReferenceThrough("Parent_Entity_Ref",
 "Parent_Relationships_Ref")
 {
 ListSeparator("\n")
 Property("Physical_Name")
 }
 }

Standard Macros

Template Language and Macro Reference Guide 90

Result

 R_2
 R_3

ForEachReferencing

Description

This iterates across the referencing set of the current context object. The referencing set is all
objects that hold a reference property to that object.

Prototype

 ForEachReference{}

Result

This macro will fail in the following circumstances:

The context object is a phantom object.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the current context is the Relationship object shown in the following illustration:

Standard Macros

Template Language and Macro Reference Guide 91

Template

 ForEachReferencing
 {
 ObjectType " - " Property("Name") "\n"
 }

Result

 Entity - E_1
 Entity - E_2
 Drawing Object Relationship - R/1
 Key Group - XIF1E/2
 Attribute - a

ForEachUserDefinedProperty

Description

This will iterate across the user-defined properties of an object. Special sub-macros are then avail-
able to retrieve information about the property.

The context object is not changed by this iterator.

Prototype

 ForEachUserProperty([Option1 [, Option2 [, …]]]){}

Parameter Status Description

Option1 � OptionN Opt One or more option keywords. These can appear in any
order.

The options available are found in the following table. These terms are not case-sensitive.

"all"

Pass all user-defined properties. This is the same as passing no parameter.

"database"

Standard Macros

Template Language and Macro Reference Guide 92

Pass user-defined properties having the Is_Database_Property tag set.

"logical"

Pass user-defined properties having the Is_Logical tag set.

"physical"

Pass user-defined properties having the Is_Physical tag set.

Result

This macro will fail in the following circumstances:

The context object is a phantom object.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume that the current context is the Model with a UDP named "Foo" set on the logical side and a
UDP named "Bar" set on the physical side.

Template

 "All UDPs\n"
 ForEachUserDefinedProperty
 {
 "\t" ForEachUserDefinedProperty.Type "\n"
 }
 "\nLogical UDPs\n"
 ForEachUserDefinedProperty("logical")
 {
 "\t" ForEachUserDefinedProperty.Type "\n"
 }

Result

Standard Macros

Template Language and Macro Reference Guide 93

 All UDPs
 Model.Logical.foo
 Model.Physical.bar
 Logical UDPs
 Model.Logical.foo

FormatProperty

Description

This macro evaluates to a formatted representation of the specified property on the current context
object. A property is identified by its class name as defined in the metadata for erwin Data Modeler.

Prototype

 Property(PropertyName [, Option1 [, Option2 [, …]]])

Parameter Status Description

PropertyName Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. They can appear in any
order and are not case-sensitive.

The options available are found in the following table.

-d:<value>

This specifies the delimiter that will be inserted between individual values in a vector prop-
erty. If this option is not supplied, or <value> is empty, a comma will be used.

-b:<value>

This specifies the bracketing characters for each value in the property. If <value> is one
character, it will be applied as an opening and closing bracket. If <value> is two characters,
the first character will be applied as an opening bracket and the second character as a clos-
ing bracket.

-p:<value>

Standard Macros

Template Language and Macro Reference Guide 94

If the property is a reference property, this option will cause the property specified by
<value> to be read on the referenced object. If this value is not supplied, or the property can-
not be evaluated, the raw reference value will be used.

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to
the resource identifier string instead of the resource value.

"fail_if_empty"

If a parameter with the value of "fail_if_empty" is supplied, the macro will fail if the result is
an empty string.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The "fail_if_empty" option is supplied and the result is an empty string.

Deprecation Level

Active

Breaking Changes

None.

Categories

Property Macros

Sample

Assume the current context object is a subject area containing the tables in the following illus-
tration:

Standard Macros

Template Language and Macro Reference Guide 95

Template

 FormatProperty("Referenced_Entities_Ref", "d:,", "b:\"",
"p:Name")
 /* Which would be the same as… */ "\n\n"
 ForEachReference("Referenced_Entities_Ref")
 {
 ListSeparator(",")
 "\"" Property("Name") "\""
 }

Result

 "E_1","E_2"
 "E_1","E_2"

Greater

Description

This determines if one value is greater than another.

If the values are being compared as numbers, it assumes that the parameters passed are numeric
values. In these cases, the macro stops reading a parameter when it encounters a character it can-
not convert. If no characters are converted, the value is assumed to be zero. For example (assum-
ing "ascii" is not specified):

"123"

123

Standard Macros

Template Language and Macro Reference Guide 96

"123Foo"

123

"Foo"

0

Prototype

 Greater(LeftString, RightString [, Option1 [, Option2 [, …]]])

Parameter Status Description

LeftString Req The left value in the test.

RightString Req The right value in the test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

"ascii"

By default, the strings are compared as numeric values. For example, "11" would compare
as greater than "9".

If this parameter is set to "ascii " the strings are interpreted as case-sensitive literals (ASCII
sort). This would cause "11" to compare as less than "9".

"no_case"

If this is set to "no_case" and the values are being compared in an ASCII sort, the strings are
compared as strings in a case-insensitive manner. The default behavior is a case-sensitive
comparison

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The first string is not greater than the second.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 97

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("Value1", "11")
 Set("Value2", "9")
 @if(Greater(Value("Value1"), Value("Value2"))
 {
 "Greater on a numeric sort\n"
 }
 @else
 {
 "Not greater on a numeric sort\n"
 }
 @if(Greater(Value("Value1"), Value("Value2"), "ascii")
 {
 "Greater on an ASCII sort\n"
 }
 @else
 {
 "Not greater on an ASCII sort\n"
 }

Result

 Greater on a numeric sort
 Not greater on an ASCII sort

GreaterOrEqual

Description

Standard Macros

Template Language and Macro Reference Guide 98

This determines if one value is greater than or equal to another.

If the values are being compared as numbers, it assumes that the parameters passed are numeric
values. In these cases, the macro stops reading a parameter when it encounters a character it can-
not convert. If no characters are converted, the value is assumed to be zero. For example (assum-
ing "ascii" is not specified):

"123"

123

"123Foo"

123

"Foo"

0

Prototype

 GreaterOrEqual(LeftString, RightString
 [, Option1 [, Option2 [, …]]])

Parameter Status Description

LeftString Req The left value in the test.

RightString Req The right value in the test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

ascii"

By default, the strings are compared as numeric values. For example, "11" would compare
as greater than "9".

If this parameter is set to "ascii " the strings are interpreted as case-sensitive literals (ASCII
sort). This would cause "11" to compare as less than "9".

"no_case"

Standard Macros

Template Language and Macro Reference Guide 99

If this is set to "no_case" and the values are being compared in an ASCII sort, the strings are
compared as strings in a case-insensitive manner. The default behavior is a case-sensitive
comparison

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The first string is not greater than or equal to the second.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("Value1", "11")
 Set("Value2", "9")
 @if(GreaterOrEqual(Value("Value1"), Value("Value2"))
 {
 "Greater or equal on a numeric sort\n"
 }
 @else
 {
 "Less on a numeric sort\n"
 }
 @if(GreaterOrEqual(Value("Value1"), Value("Value2"), "ascii")
 {
 "Greater or equal on an ASCII sort\n"
 }
 @else
 {

Standard Macros

Template Language and Macro Reference Guide 100

 "Less on an ASCII sort\n"
 }

Result

 Greater or equal on a numeric sort
 Less on an ASCII sort

HasOwnees

Description

This will determine if the current context object has ownees of a given type.

Prototype

 HasOwnees([Type])

Parameter Status Description

Type Opt The type of the ownee desired. If not type is specified, then the
macro will succeed if the object has any ownees.

Result

This macro will fail in the following circumstances:

There is no context object.

There are no ownees of the specified type.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 101

Object Macros

Sample

Assume the current context is a Key_Group.

Template

 /* Only emit something if the key group has members. */
 [HasOwnees(�Key_Group_Member�)
 …
]

HasPropertyCharacteristic

Description

This determines if the specified property on the current context object has the specified char-
acteristic.

If this macro is invoked against a phantom object, the results are undefined.

Prototype

 HasPropertyCharacteristic(PropertyName, Characteristic)

Parameter Status Description

PropertyName Req The type name of the property.

Characteristic Req The name of the characteristic that is to be checked. Cur-
rently supported values are found below.

The characteristics available are found in the following table. The names are not case-sensitive.

"calculated" or "prefetch "

This characteristic is set when the property does not have a value of its own, but is cal-
culated from other properties on the object.

"default "

Standard Macros

Template Language and Macro Reference Guide 102

This characteristic is set if the value in the property is a default value supplied by erwin Data
Modeler.

"hardened"

This characteristic is set if the value in the property has been hardened against change. Cur-
rently, this is supported only for certain name properties on logical/physical objects, so this
only has meaning when applied to the Name and Physical_Name properties of an Attribute,
Default, Domain, Entity, Key_Group, Relationship or Validation_Rule. Future releases of
erwin Data Modeler may extend hardening to more property types.

"autocalculated"

This characteristic is set when a property is in an auto-calculate state. Currently, this is sup-
ported only for the Cardinality property on the Relationship object. Future releases may
extend this to other properties.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The characteristic is not set.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Template

 /* Indicate if the physical name is hardened. */
 ForEachOwnee("Attribute")
 {
 [HasPropertyCharacteristic("Physical_Name", "hardened")
 "Column " Property("Physical_Name") "is hardened\n"
]

Standard Macros

Template Language and Macro Reference Guide 103

 }

IncludeFile

Description

This loads the contents of a text file, then parses and evaluates it.

The file is expected to contain only TLX code, and the entire contents will be evaluated in one
pass. The contents are expected to contain macro block delimiters. Contrast this with the
Execute macro, which works on a file containing multiple TLX entries and where the entries do
not contain macro block delimiters.

Prototype

 IncludeFile(FileName)

Parameter Status Description

Fileame Req The name of the file. When specifying a path, remember that
backslashes in literals must be escaped.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The specified source file is not found.

Deprecation Level

Active

Breaking Changes

None

Categories

Include Macros

Standard Macros

Template Language and Macro Reference Guide 104

Sample

Assume a file, reusable_template.txt , had contents such as the following.

 The entity's name is {# Property("Physical Name") #}.

Assume the current context is a table called E_1.

Template

 IncludeFile("c:\\reusable_template.txt")

Result

 The entity's name is E_1.

Increment

Description

This macro will increment the value in the specified variable. The variable is assumed to contain an
integer value. If it does not, the value is coerced to zero and the increment occurs. If the variable
does not exist, it is created first with a value of zero, then incremented.

Prototype

 Increment(VariableName)

Parameter Status Description

VariableName Req The name of the variable.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 105

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("Var1", "0")
 Increment("Var1") Value("Var1") "\n"
 Increment("Var1") Value("Var1") "\n"
 Set("Var2", "foo")
 Increment("Var2") Value("Var2") "\n"
 Increment("Var3") Value("Var3")

Result

 1
 2
 1
 1

Integer

Description

This retrieves the value in the specified variable previously set by SetInteger.

Prototype

 Integer(VariableName)

Parameter Status Description

VariableName Req The name of the previously defined variable.

Result

Standard Macros

Template Language and Macro Reference Guide 106

This macro will fail in the following circumstances:

The specified variable is not found.

Deprecation Level

Deprecated

Use the Set and Value macros.

Breaking Changes

None

Categories

String Macros

Sample

Template

 SetInteger("Counter", "0")
 Integer("Counter")

Result

 0

IsCreated

Description

This macro will test whether the context object was created during the current session.

Prototype

 IsCreated

Result

This macro will fail in the following circumstances:

The context object was not created during the current session.

Standard Macros

Template Language and Macro Reference Guide 107

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Assume that there are two Entity objects in the model, E_1 was reverse-engineered from the data-
base and E_2 was newly-created. The current context is the model.

Template

 ForEachOfType("Entity")
 {
 ListSeparator("\n")
 @if (IsCreated)
 {
 "CREATE TABLE " Property("Physical_Name") …
 }
 @else
 {
 "ALTER TABLE " Property("Physical_Name") …
 }
 }

Result

 ALTER TABLE E_1 …
 CREATE TABLE E_2 …

IsDefaultRITrigger

Description

Standard Macros

Template Language and Macro Reference Guide 108

This macro will test whether the current Trigger object is a erwin� Data Modeler-generated RI trig-
ger.

Prototype

 IsDefaultRITrigger

Result

This macro will fail in the following circumstances:

The context object is not a erwin Data Modeler-generated RI Trigger object.

Deprecation Level

Active

Breaking Changes

None

Categories

Object Macros

Sample

The following will retrieve the body of the trigger from the object if it is a default RI trigger. Other-
wise, it will use a template to create the body.

Template

 <@if (IsDefaultRITrigger)
 {
 Property("Trigger_Body", "no_translate")
 }
 @else
 {
 FE::ExpandErwinMacro("Trigger_Body")
 }
 >

Standard Macros

Template Language and Macro Reference Guide 109

IsDeleted

Description

This macro will test whether the context object was deleted during the current session.

Prototype

IsDeleted

Result

This macro will fail in the following circumstances:

The context object was not deleted during the current session.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample-

Assume that table E_1 was deleted from the model.

Template

 ForEachOfType("Entity", "all")
 {
 [IsDeleted
 "DROP TABLE " Property("Physical_Name")
]
 }

Result

Standard Macros

Template Language and Macro Reference Guide 110

 DROP TABLE E_1

IsGlobalFlagClear

Description

This macro will test whether a global flag is clear (not set). Global flags are set by the SetG-
lobalFlag macro. Flags are not case-sensitive.

Prototype

 IsGlobalFlagClear(Flag)

Parameter Status Description

Flag Req The name of the flag to test.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The global flag is set.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 111

 /* Flag that the table is being recreated */
 SetGlobalFlag(Property("Name") "created")
 …
 @if (IsGlobalFlagClear(Property("Name") "created"))
 {
 "ALTER TABLE " …
 }
 @else
 {
 "/* ALTER not necessary */"
 }

Result

 /* ALTER not necessary */

IsGlobalFlagSet

Description

This macro will test whether a global flag has been set. Global flags are set by the SetGlobalFlag
macro. Flags are not case-sensitive.

Prototype

 IsGlobalFlagSet(Flag)

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The global flag is not set.

Deprecation Level

Active

Breaking Changes

None

Standard Macros

Template Language and Macro Reference Guide 112

Categories

Stack Macros

Sample

Template

 /* Flag that the table is being recreated */
 SetGlobalFlag(Property("Name") "created")
 …
 @if (IsGlobalFlagSet(Property("Name") "created"))
 {
 "/* ALTER not necessary */"
 }
 @else
 {
 "ALTER TABLE " …
 }

Result

 /* ALTER not necessary */

IsLocalFlagSet

Description

This macro will test whether a local flag has been set for the current context object. Local flags are
set by the SetLocalFlag macro. Flags are not case-sensitive.

Prototype

 IsLocalFlagSet(Flag)

Parameter Status Description

Flag Req The name of the flag to test.

Standard Macros

Template Language and Macro Reference Guide 113

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The local flag is not set.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

 SetLocalFlag("MyFlag")
 [IsLocalFlagSet("MyFlag") "Flag was set #1.\n"]
 PushOwner
 [IsLocalFlagSet("MyFlag") "Flag was set #2.\n"]
 Pop
 [IsLocalFlagSet("MyFlag") "Flag was set #3."]

Result

 Flag was set #1.
 Flag was set #3.

IsMatch

Description

This macro will succeed if the specified value matches any item in a list. The comparisons are not
case sensitive.

Prototype

Standard Macros

Template Language and Macro Reference Guide 114

 IsMatch(Value, MatchValue0 [, MatchValue1 [, …]])

Parameter Status Description

Value Req The value to test for.

MatchValue Req The first value to compare against.

MatchValue1 � MatchValueN Opt Other values to compare against.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The Value parameter is not equal to any of the MatchValues.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Assume the current context is a View object.

Template

 [IsMatch(ObjectType, "Entity", "View", "Cached_View")
 "It's an entity-like object."
]

Result

 It's an entity-like object.

Standard Macros

Template Language and Macro Reference Guide 115

IsModified

Description

This macro will test whether the context object was modified during the current session.

If exception properties are supplied as parameters, they will be ignored in considering whether or
not the object was modified.

Prototype

 IsModified([ExceptionProperty1 [, ExceptionProperty2 [, …]]])

Parameter Status Description

ExceptionProperty1 � Excep-
tionPropertyN

Req Properties to ignore when considering
modification status.

Result

This macro will fail in the following circumstances:

The context object was not modified during the current session.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Assume that table E_1 had its physical name modified.

Template

Standard Macros

Template Language and Macro Reference Guide 116

 ForEachOfType("Entity")
 {
 @if(IsModified)
 {
 "Property("Physical_Name") " was modified.\n"
 }
 }

Result

 E_1 was modified.

IsNotInheritedFromUDD

Description

This macro determines if domain (user-defined datatype) inheritance is present for a constraint. If
Property is specified, the macro checks if the specified property is inherited. If Property is not spe-
cified, it checks to see if the Check_Constraint_Usage object is inherited.

Since inherited constraints and some properties are not present in the database, this macro allows
determinations to be made if DROP statements should be created.

Prototype

 IsNotInheritedFromUDD([Property])

Parameter Status Description

Property Opt The type name of the property.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The domain inheritance is not present..

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 117

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Template

 /* If the column defines a default for itself, we need to do
something. If it picks up the default from a user-defined data-
type, we don't. */
 [IsNotInheritedFromUDD
 "exec sp_binddefault " …
]

Result

 The sp_binddefault will be emitted for columns that define their
own defaults.

IsOwnerPropertyEqual

Description

This macro will succeed if the specified property has the specified value on the owning object of
the current context object.

Prototype

 IsOwnerPropertyEqual(Property, Value [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

Standard Macros

Template Language and Macro Reference Guide 118

Value Req The value to test for.

NotFoundValue Opt This should be set to 'true' or 'false' to indicate the desired
return value if the property is not found. If this is not sup-
plied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The property is found and does not have the specified value.

The property is not found and NotFoundValue is not set to "true".

The current context object does not have an owner object.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Template

 ForEachOwnee("Attribute")
 {
 [IsOwnerPropertyEqual("Oracle_Is_Temporary_Table", "true")
 …
]
 }
 I

IsOwnerPropertyFalse

Description

Standard Macros

Template Language and Macro Reference Guide 119

This macro will succeed if the value in the property is a Boolean value of 'false' on the owning
object of the current context object. Missing Boolean properties are assumed to be 'false'; use the
NotFoundValue if this behavior is not desired.

Prototype

 IsOwnerPropertyFalse(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'false' and the property does not exist, the
macro will fail.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The property does not exist and NotFoundValue is set.

The value in the property is not a Boolean.

The value in the property is not 'false'.

The current context object does not have an owner object.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 120

 ForEachOwnee("Attribute")
 {
 [IsOwnerPropertyFalse("Oracle_Is_Temporary_Table", "true")
 …
]
 }

IsOwnerPropertyNotEqual

Description

This macro will succeed if the specified property does not have the specified value on the owning
object of the current context object.

Prototype

 IsOwnerPropertyNotEqual(Property, Value [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to "true" or "false" to indicate the
desired return value if the property is not found. If this is
not supplied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The property value equals Value.

The property is not found and NotFoundValue is 'false' or not specified.

The current context object does not have an owner object.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 121

Active

Breaking Changes

None

Categories

Property Macros

Sample

Template

 ForEachOwnee("Attribute")
 {
 [IsOwnerPropertyNotEqual("Oracle_Is_Temporary_Table", "true")
 …
]
 }

IsOwnerPropertyTrue

Description

This macro will succeed if the value in the property is a Boolean value of 'true' on the owning object
of the current context object.

Prototype

 IsOwnerPropertyTrue(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'true' and the property does not exist, the
macro will succeed.

Result

Standard Macros

Template Language and Macro Reference Guide 122

This macro will fail in the following circumstances:

The required parameters are not supplied.

The property does not exist and NotFoundValue is not set.

The value in the property is not a Boolean.

The value in the property is not 'true'.

The current context object does not have an owner object.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Template

 ForEachOwnee("Attribute")
 {
 [IsOwnerPropertyTrue("Oracle_Is_Temporary_Table", "true")
 …
]
 }

IsPropertyEqual

Description

This macro will succeed if the specified property has the specified value.

Prototype

 IsPropertyEqual(Property, Value [, NotFoundValue])

Standard Macros

Template Language and Macro Reference Guide 123

Parameter Status Description

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to 'true' or 'false' to indicate the desired
return value if the property is not found. If this is not sup-
plied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The property is found and does not have the specified value.

The property is not found and NotFoundValue is not set to "true".

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the context is the Subject_Area object containing the tables in the following illustration:

Template

Standard Macros

Template Language and Macro Reference Guide 124

 ForEachReference("Referenced_Entities_Ref")
 {
 ListSeparator("\n")
 Property("Physical_Name") " is "
 [IsPropertyEqual("Type", "1") "Independent Entity"]
 [IsPropertyEqual("Type", "6") "Dependent Entity"]
 }

Result

 E_1 is Independent Entity
 E_2 is Dependent Entity

IsPropertyEqualFrom

Description

This macro will succeed if the specified property has the specified value on the first object in the
context stack with the specified type.

Prototype

 IsPropertyEqualFrom(ObjectType, Property, Value [,
NotFoundValue])

Parameter Status Description

ObjectType Req The object type.

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to 'true' or 'false' to indicate the desired
return value if the property is not found. If this is not sup-
plied, the macro will fail in this situation.

Result

Standard Macros

Template Language and Macro Reference Guide 125

This macro will fail in the following circumstances:

The referenced object is not found.

The property is found and does not have the specified value.

The property is not found and NotFoundValue is not set to "true".

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume that the context stack has the Relationship as the first entry and E_2 as the second:

Template

 /* Is the relationship identifying? */
 @if(IsPropertyEqualFrom("Relationship", "Type", "2")
 {
 "It's identifying."
 }

Result

Standard Macros

Template Language and Macro Reference Guide 126

 It's identifying.

IsPropertyEqualThrough

Description

This macro will succeed if the specified property has the specified value on the object pointed to by
the specified scalar reference property on the current context object.

Prototype

 IsPropertyEqualThrough(Reference, Property, Value [,
NotFoundValue])

Parameter Status Description

Reference Req The reference property.

Property Req The type name of the property to query.

Value Req The value to test for.

NotFoundValue Opt This should be set to 'true' or 'false' to indicate the desired
return value if the property is not found. If this is not sup-
plied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The referenced object is not found.

The property is found and does not have the specified value.

The property is not found and NotFoundValue is not set to "true".

Deprecation Level

Active

Breaking Changes

None

Standard Macros

Template Language and Macro Reference Guide 127

Categories

Property Macros

Sample

Assume that the context is the relationship:

Template

 /* Is the parent entity an independent entity? */

@if (IsPropertyEqualThrough("Parent_Entity_Ref", "Type", "1"))
 {
 "It's independent."
 }

Result

 It's independent

IsPropertyFalse

Description

This macro will succeed if the value in the property is a Boolean value of 'false'. Missing Boolean
properties are assumed to be 'false'; use the NotFoundValue if this behavior is not desired.

Prototype

Standard Macros

Template Language and Macro Reference Guide 128

 IsPropertyFalse(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'false' and the property does not exist, the
macro will fail.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The property does not exist and NotFoundValue is set.

The value in the property is not a Boolean.

The value in the property is not 'false'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the model contains three entities: E_1 is logical only, E_2 is physical only and E_3 is
neither.

Template

 ForEachOfType("Entity")
 {
 Property("Name") " is "
 @if (IsPropertyFalse("Physical Only"))

Standard Macros

Template Language and Macro Reference Guide 129

 {
 " present in the logical model."
 }
 @else
 {
 " not present in the logical model."
 }
 }

Result

 E_1 is present in the logical model.
 E_2 is not present in the logical model.
 E_3 is present in the logical model.

IsPropertyFalseFrom

Description

This macro will succeed if the value in the property is a Boolean value of 'false' on the first object in
the context stack with the specified type. Missing Boolean properties are assumed to be 'false';
use the NotFoundValue if this behavior is not desired.

Prototype

 IsPropertyFalseFrom(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'false' and the property does not exist, the
macro will fail.

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 130

The referenced object is not found.

The required parameters are not supplied.

The property does not exist and NotFoundValue is set.

The value in the property is not a Boolean.

The value in the property is not 'false'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume that the context stack has the Model on it somewhere.

Template

 /* Are special characters disallowed? */
 @if(IsPropertyFalseFrom("Model", "Allow_Special_Characters"))
 {
 …
 }

IsPropertyFalseThrough

Description

This macro will succeed if the value in the property is a Boolean value of 'false' on the object poin-
ted to by the specified scalar reference property on the current context object. Missing Boolean
properties are assumed to be 'false'; use the NotFoundValue if this behavior is not desired.

Prototype

 IsPropertyFalseThrough(Property [, NotFoundValue])

Standard Macros

Template Language and Macro Reference Guide 131

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'false' and the property does not exist, the
macro will fail.

Result

This macro will fail in the following circumstances:

The referenced object is not found.

The required parameters are not supplied.

The property does not exist and NotFoundValue is set.

The value in the property is not a Boolean.

The value in the property is not 'false'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume that the context is a Relationship.

Template

 /* Is the child entity physical only? */
 @if (IsPropertyFalseThrough("Child_Entity_Ref",
 "Is_Physical_Only"))
 {
 "It's not physical only."
 }

Standard Macros

Template Language and Macro Reference Guide 132

IsPropertyModified

Description

This macro will test whether any of the specified properties on the context object were modified dur-
ing the current session.

Prototype

IsPropertyModified(Property1 [, Property2 [, …]])

Parameter Status Description

Property1 � PropertyN Req One or more property names.

Result

This macro will fail in the following circumstances:

None of the specified properties on the context object were modified during the current ses-
sion.

Deprecation Level

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Template

 [IsPropertyModified("Parent_Relations_Ref")
 Execute("Drop And Create View")
]

Result

Standard Macros

Template Language and Macro Reference Guide 133

Statements will be executed for each view that has new parent tables.

IsPropertyNotEqual

Description

This macro will succeed if the specified property does not have the specified value.

Prototype

 IsPropertyNotEqual(Property, Value [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to "true" or "false" to indicate the
desired return value if the property is not found. If this is
not supplied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The property value equals Value.

The property is not found and NotFoundValue is 'false' or not specified.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Standard Macros

Template Language and Macro Reference Guide 134

Sample

Template

 [IsPropertyNotEqual("Null Option", "0") "not null"]

IsPropertyNotEqualFrom

Description

This macro will succeed if the specified property does not have the specified value on the first
object in the context stack with the specified type.

Prototype

 IsPropertyNotEqualFrom(Property, Value [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to "true" or "false" to indicate the
desired return value if the property is not found. If this is
not supplied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

The referenced object is not found.

The required parameters are not supplied.

The property value equals Value.

The property is not found and NotFoundValue is 'false' or not specified.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 135

Breaking Changes

None

Categories

Property Macros

Sample

Template

 [IsPropertyNotEqualFrom("Attribute", "Null Option", "0") "not
null"]

IsPropertyNotEqualThrough

Description

This macro will succeed if the specified property does not have the specified value on the object
pointed to by the specified scalar reference property on the current context object.

Prototype

 IsPropertyNotEqualThrough(Property, Value [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

Value Req The value to test for.

NotFoundValue Opt This should be set to "true" or "false" to indicate the
desired return value if the property is not found. If this is
not supplied, the macro will fail in this situation.

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 136

The referenced object is not found.

The required parameters are not supplied.

The property value equals Value.

The property is not found and NotFoundValue is 'false' or not specified.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the context object is a Key_Group_Member.

Template

 [IsPropertyNotEqualThrough("Attribute_Ref", "Null Option", "0")
"not null"]

IsPropertyNotNull

Description

This macro will succeed or fail based upon the value in the specified property.

Prototype

 IsPropertyNotNull(Property [, CheckCount])

Parameter Status Description

Property Req The type name of the property.

CheckCount Opt If this is set to 'true', the macro will fail if the property does

Standard Macros

Template Language and Macro Reference Guide 137

not have at least one value.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The value in the property is NULL.

The property has no values and CheckCount is set to 'true'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the current context is a Subject_Area object with at least one member.

Template

 [IsPropertyNotNull("Referenced Entities") "has members"]

Result

 has members

IsPropertyNull

Description

This macro will succeed or fail based upon the value in the specified property.

Prototype

Standard Macros

Template Language and Macro Reference Guide 138

 IsPropertyNull(Property [, MissingValue])

Parameter Status Description

Property Req The type name of the property.

MissingValue Opt By default, the macro will succeed if the property does not
exist. If this parameter is specified as "false" the macro will
fail if the property does not exist.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The value in the property is not NULL.

The property does not exist and MissingValue is "false".

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the current context is an Attribute object created with in-place editing on the diagram (its
Null_Option_Type property has not been set explicitly).

Template

 [IsPropertyNull("Null_Option_Type") "null"]

Result

Standard Macros

Template Language and Macro Reference Guide 139

 null

IsPropertyReordered

Description

This macro will succeed determine if the specified property has been modified such that its values
are reordered.

NB: This macro will returns undefined results when either the old or the new copy of the property
contains duplicate values.

Prototype

 IsPropertyReordered(Property [, Option1 [, Option2 [, …]]])

Parameter Status Description

Property Req The type name of the property.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

"existing_only"

By default, the presence of a new value or the deletion of an old value will cause the macro
to fail. If this option is specified, then the macro will only check to make sure that the remain-
ing elements are in the same order relative to each other.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The value of the property has not been modified.

The value of the property has had new elements added or existing elements removed and
"existing_only" is not specified.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 140

Active

Breaking Changes

None

Categories

Alter Macros

Sample

Template

 [IsPropertyReordered("Physical_Columns_Order_Ref")
 Execute("Create Entity")
]

Result

If the order of the columns in a table has changed, the table will be recreated.

IsPropertyTrue

Description

This macro will succeed if the value in the property is a Boolean value of 'true'.

Prototype

 IsPropertyTrue(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'true' and the property does not exist, the
macro will succeed.

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 141

The required parameters are not supplied.

The property does not exist and NotFoundValue is not set.

The value in the property is not a Boolean.

The value in the property is not 'true'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the model contains three entities: E_1 is logical only, E_2 is physical only and E_3 is
neither.

Template

 ForEachOfType("Entity")
 {
 Property("Name") " is "
 @if (IsPropertyFalse("Is_Logical_Only"))
 {
 " present in the physical model."
 }
 @else
 {
 " not present in the physical model."
 }
 }

Result

 E_1 is not present in the physical model.
 E_2 is present in the physical model.

Standard Macros

Template Language and Macro Reference Guide 142

 E_3 is present in the physical model.

IsPropertyTrueFrom

Description

This macro will succeed if the value in the property is a Boolean value of 'true' on the first object in
the context stack with the specified type.

Prototype

 IsPropertyTrueFrom(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'true' and the property does not exist, the
macro will succeed.

Result

This macro will fail in the following circumstances:

The referenced object is not found.

The required parameters are not supplied.

The property does not exist and NotFoundValue is not set.

The value in the property is not a Boolean.

The value in the property is not 'true'.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 143

Property Macros

Sample

Assume that the context stack has the Model on it somewhere.

Template

 /* Are special characters allowed? */
 @if(IsPropertyTrueFrom("Model", "Allow_Special_Characters"))
 {
 …
 }

IsPropertyTrueThrough

Description

This macro will succeed if the value in the property is a Boolean value of 'true' on the object pointed
to by the specified scalar reference property on the current context object.

Prototype

 IsPropertyTrueThrough(Property [, NotFoundValue])

Parameter Status Description

Property Req The type name of the property.

NotFoundValue Opt If this is set to 'true' and the property does not exist, the
macro will succeed.

Result

This macro will fail in the following circumstances:

The referenced object is not found.

The required parameters are not supplied.

The property does not exist and NotFoundValue is not set.

Standard Macros

Template Language and Macro Reference Guide 144

The value in the property is not a Boolean.

The value in the property is not 'true'.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume that the context is a Relationship.

Template

 /* Is the child entity physical only? */
 @if (IsPropertyTrueThrough("Child_Entity_Ref",
 "Is_Physical_Only"))
 {
 "It's physical only."
 }

IterationCount

Description

This evaluates to a count of the iterations performed by the first iterator on the iterator stack.

Prototype

 IterationCount([SuccessOnly])

Parameter Status Description

SuccessOnly Opt By default, the absolute number of iterations is returned. If

Standard Macros

Template Language and Macro Reference Guide 145

this is set to 'true' then a count of the iterations where the
body was successfully expanded will returned.

Result

This macro will fail in the following circumstances:

There is no iterator on the iterator stack.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume a model that has two Entity objects in it: E_1 and E_2.

Template

 ForEachOfType("Entity")
 {
 ListSeparator("\n")
 IterationCount " - " Property("Name")
 }

Result

 1 - E_1
 2 - E_2

Left

Description

Standard Macros

Template Language and Macro Reference Guide 146

This macro evaluates to a substring comprised of the leftmost characters of the specified source
string.

Prototype

 Left(SourceString, Length)

Parameter Status Description

SourceString Req The source string.

Length Req The length of the desired substring.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The Length parameter cannot be evaluated to a number greater than or equal to '1'.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Assume the context is the primary key of an Entity object.

Template

 Switch(Left(Property("Key_Group_Type"), "2"))
 {
 Choose("PK")
 {
 "This is a primary key."

Standard Macros

Template Language and Macro Reference Guide 147

 }
 Choose("AK")
 {
 "This is an alternate key."
 }
 Default
 {
 "This is an inversion entry."
 }
 Choose("XX")
 {
 /* This block will never execute, because a preceding block
 will always evaluate successfully */
 }
 }

Result

 This is a primary key.

Less

Description

This determines if one value is less than another.

If the values are being compared as numbers, it assumes that the parameters passed are numeric
values. In these cases, the macro stops reading a parameter when it encounters a character it can-
not convert. If no characters are converted, the value is assumed to be zero. For example (assum-
ing "ascii" is not specified):

"123"

123

"123Foo"

123

"Foo"

0

Prototype

Standard Macros

Template Language and Macro Reference Guide 148

 Less(LeftString, RightString [, Option1 [, Option2 [, …]]])

Parameter Status Description

LeftString Req The left value in the test.

RightString Req The right value in the test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

"ascii"

By default, the strings are compared as numeric values. For example, "11" would compare
as greater than "9".

If this parameter is set to "ascii " the strings are interpreted as case-sensitive literals (ASCII
sort). This would cause "11" to compare as less than "9".

"no_case"

If this is set to "no_case" and the values are being compared in an ASCII sort, the strings are
compared as strings in a case-insensitive manner. The default behavior is a case-sensitive
comparison

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The first string is not less than the second.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 149

String Macros

Sample

Template

 Set("Value1", "11")
 Set("Value2", "9")
 @if(Less(Value("Value1"), Value("Value2"))
 {
 "Less on a numeric sort\n"
 }
 @else
 {
 "Not less on a numeric sort\n"
 }
 @if(Less(Value("Value1"), Value("Value2"), "ascii")
 {
 "Less on an ASCII sort\n"
 }
 @else
 {
 "Not less on an ASCII sort\n"
 }

Result

 Not less on a numeric sort
 Less on an ASCII sort

LessOrEqual

Description

This determines if one value is less than or equal to another.

If the values are being compared as numbers, it assumes that the parameters passed are numeric
values. In these cases, the macro stops reading a parameter when it encounters a character it can-
not convert. If no characters are converted, the value is assumed to be zero. For example (assum-
ing "ascii" is not specified):

Standard Macros

Template Language and Macro Reference Guide 150

"123"

123

"123Foo"

123

"Foo"

0

Prototype

 LessOrEqual(LeftString, RightString [, Option1 [, Option2 [,
…]]])

Parameter Status Description

LeftString Req The left value in the test.

RightString Req The right value in the test.

Option1 �
OptionN

Opt One or more option keywords. They can appear in any order
and are not case-sensitive.

The options available are found in the following table.

"ascii"

By default, the strings are compared as numeric values. For example, "11" would compare
as greater than "9".

If this parameter is set to "ascii " the strings are interpreted as case-sensitive literals (ASCII
sort). This would cause "11" to compare as less than "9".

"no_case"

If this is set to "no_case" and the values are being compared in an ASCII sort, the strings are
compared as strings in a case-insensitive manner. The default behavior is a case-sensitive
comparison

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 151

The required parameters are not passed in.

The first string is not less than or equal to the second.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("Value1", "11")
 Set("Value2", "9")
 @if(LessOrEqual(Value("Value1"), Value("Value2"))
 {
 "Less or equal on a numeric sort\n"
 }
 @else
 {
 "Greater on a numeric sort\n"
 }
 @if(Less(Value("Value1"), Value("Value2"), "ascii")
 {
 "Less or equal on an ASCII sort\n"
 }
 @else
 {
 "Greater on an ASCII sort\n"
 }

Result

Standard Macros

Template Language and Macro Reference Guide 152

 Greater on a numeric sort
 Less or equal on an ASCII sort

ListSeparator

Description

This macro is used inside of an iterator block. It evaluates to an empty string on the first loop of iter-
ation. It evaluates to the value specified in String on subsequent loops. Loops are counted only if
the loop block evaluates successfully.

Prototype

 ListSeparator(String)

Parameter Status Description

String Req The separator string.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Assume the current context is the Entity object in the following illustration:

Standard Macros

Template Language and Macro Reference Guide 153

Template

 ForEachOwnee("Attribute")
 {
 ListSeparator(",\n")
 Property("Physical_Name")
 }

Result

 a,
 b,
 c

Lookup

Description

This is a lookup macro that evaluates to a specified string based upon the value specified.

Replacement mappings are specified as value pairs in the parameter list. Values are compared
case-insensitively.

Prototype

 Lookup(Value [, Source0, Target0
 [, Source1, Target1 [,…]]] [, Default])

Standard Macros

Template Language and Macro Reference Guide 154

Parameter Status Description

Value Req The value to examine.

Source0 Opt The first actual value to compare.

Target0 Opt The value to return if Source0 is matched.

Source1 � SourceN Opt Subsequent values to compare.

Target1 � TargetN Opt The values to return if Source1 through SourceN are
matched.

Default Opt The value to return if no other match is found.

Result

This macro will fail in the following circumstances:

Required parameters are not supplied.

The value is not found in the list of values and no default value is provided.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Lookup(Property("Null_Option_Type"), "0", "Null", "1", "Not
Null")

Standard Macros

Template Language and Macro Reference Guide 155

LookupProperty

Description

This is a lookup macro that evaluates to a specified string based upon the value actually held in the
specified property of the current context object.

Replacement mappings are specified as value pairs in the parameter list. Values are compared
case-insensitively.

Prototype

 LookupProperty(Property [, Source0, Target0
 [, Source1, Target1 [,…]]] [, Default])

Parameter Status Description

Value Req The value to examine.

Source0 Opt The first actual value to compare.

Target0 Opt The value to return if Source0 is matched.

Source1 � SourceN Opt Subsequent values to compare.

Target1 � TargetN Opt The values to return if Source1 through SourceN are
matched.

Default Opt The value to return if no other match is found.

Result

This macro will fail in the following circumstances:

Required parameters are not supplied.

The specified property does not exist and no default value is provided.

The actual value of the property is not found in the list of values and no default value is
provided.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 156

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the current context is the Entity object in the following illustration:

Template

 ForEachOwnee("Attribute")
 {
 ListSeparator(",\n")
 Property("Physical_Name") " is "
 LookupProperty("Null_Option_Type", "0", "null", "1", "not null",
 "8", "identity")
 }

Result

 a is not null
 b is null
 c is identity

Standard Macros

Template Language and Macro Reference Guide 157

Loop

Description

This iterator loops until a global flag is cleared.

Prototype

 Loop(Flag)

Parameter Status Description

Flag Req The name of the global flag.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Iterator Macros

Sample

Template

 SetGlobalFlag("Continue")
 Loop("Continue")
 {
 ListSeparator("\n")
 @if (Greater(IterationCount, "5"))
 {
 ClearGlobalFlag("Continue")

Standard Macros

Template Language and Macro Reference Guide 158

 }
 @else
 {
 IterationCount
 }
 }

Result

 1
 2
 3
 4
 5

LowerCase

Description

This macro evaluates to the lower case version of a string.

Prototype

 LowerCase(SourceString)

Parameter Status Description

SourceString Req The source string.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

Standard Macros

Template Language and Macro Reference Guide 159

None

Categories

String Macros

Sample

Assume the context object is E_1 in the following illustration:

Template

 LowerCase(Property("Name"))

Result

 e_1

Mid

Description

This macro evaluates to a substring of the specified source string.

Prototype

 Mid(SourceString, Start, Length)

Parameter Status Description

Standard Macros

Template Language and Macro Reference Guide 160

SourceString Req The source string.

Start Req The zero-based starting position for the substring.

Length Req The length of the desired substring. If there are not enough
characters in the source string to fulfill the Length spe-
cification, the macro will return the characters available.

In non-Unicode versions of the product, the Length spe-
cification represents bytes. In other words, a character rep-
resented by a lead-byte and trail-byte would count as two.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The Start parameter is not '0' or greater, or the Length parameter is not '1' or greater.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Assume the context object is the Entity in the following illustration:

Standard Macros

Template Language and Macro Reference Guide 161

Template

 Mid(Property("Physical_Name", "0", "3")

Result

 CUS

Modulo

Description

This predicate tests the modulo value of two numbers. The modulo is the remainder when Left is
divided by Right.

Prototype

 Modulo(Left, Right [, Remainder])

Parameter Status Description

Left Req The numerator of the division.

Right Req The denominator of the division.

Remainder Opt By default, the macro succeeds if the remainder is '0'. If this
value is specified, the macro succeeds if it matches the

Standard Macros

Template Language and Macro Reference Guide 162

remainder.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

In this sample, we want to insert a carriage return every three values. Since we placed the ListSe-
parator call before the output of the actual value (to avoid a trailing separator), we need to test
based upon a modulo value of '1'…for example, "insert the carriage return before the fourth, sev-
enth, and so on, value."

Template

 SetGlobalFlag("Continue")
 Loop("Continue")
 {
 ListSeparator([Modulo(IterationCount, "3", "1") "\n"])
 @if (Greater(IterationCount, "6"))
 {
 ClearGlobalFlag("Continue")
 }
 @else
 {
 IterationCount
 }
 }

Standard Macros

Template Language and Macro Reference Guide 163

Result

 123
 456

NotEqual

Description

This determines if one string is not equal to another.

Prototype

 NotEqual(LeftString, RightString [, Option])

Parameter Status Description

LeftString Req The left string in the test.

RightString Req The right string in the test.

Option Opt By default the comparison is case-sensitive. If this parameter is
set to "no_case" the comparison will be done in a case-insens-
itive manner.

The options available are found in the following table.

"no_case"

By default the comparison is case-sensitive. If this option is set the comparison will be done
in a case-insensitive manner.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The two strings are equal.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 164

Breaking Changes

None

Categories

String Macros

Sample

Assume the context is the following table:

Template

 @if(NotEqual(Property("Name"), "e_1"))
 {
 "Name is not exactly 'e_1'.\n"
 }
 @else
 {
 "Name is exactly 'e_1'.\n"
 }
 @if(NotEqual(Property("Name"), "e_1", "no_case"))
 {
 "Name is not case-insensitively like 'e_1'."
 }

Result

 Name is not exactly 'e_1'.

ObjectId

Description

Standard Macros

Template Language and Macro Reference Guide 165

This evaluates to the id of the current context object.

For M0 objects (data), this is just an integer that identifies it uniquely.

For M1 objects (metadata), the integer is also uniquely-identifying, but it is a packed combination
of an identifier for the source of the metadata and a unique value for the object. For example,
metadata defined by erwin Data Modeler will generally have a value of '1' or '0', erwin Data
Modeler NSM metadata will have a value of '4', while UDPs will have a value of '9'.

The values for object ids are stable for a given session of erwin Data Modeler. However, they
can change between sessions. If you need an identifier that is stable across sessions, use the
value retrieved by:

 Property("Long Id")

Prototype

 ObjectId([Option])

Parameter Status Description

Option Req By default the entire id is returned. A component of the id can
be retrieved by using one of the values found below.

"product "

Retrieve just the product identifier portion of the id for an M1 object. This has no effect for
M0 objects.

"identifier"

Retrieve just the object identifier portion of the id for an M1 object. This has no effect for M0
objects.

Result

This macro will fail if:

There is no context object.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 166

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the context object is the Model object.

Template

 ObjectId "\n"
 ObjectId("product") "\n"
 ObjectId("identifier") "\n"
 PushMetaObject
 ObjectId "\n"
 ObjectId("product") "\n"
 ObjectId("identifier")

Result

 1
 1
 1
 1075838978
 1
 2

ObjectType

Description

This evaluates to the type code name of the current context object.

Prototype

 ObjectType

Result

Standard Macros

Template Language and Macro Reference Guide 167

This macro will fail in the following circumstances:

There is no context object.

Deprecation Level

Active

Breaking Changes

None

Categories

Sample

Assume the current context is an Entity.

Template

 [Equal(ObjectType, "Entity")
 "This is an entity"
]

Result

 This is an entity

OnceForObject

Description

This macro will attempt to set a global flag that is a concatenation of the Label parameter and the
context object�s id. The macro will fail if this flag is already set. This allows a template to test for a
previous emission of a given template for the object.

Prototype

 OnceForObject(Label [, Option])

Parameter Status Description

Standard Macros

Template Language and Macro Reference Guide 168

Label Req A label that will be used to distinguish the particular flag being
set.

Option Opt An option keyword. They can appear in any order and are not
case-sensitive.

The options available are found in the following table.

"no_set"

If this is present, then only the test of the existence of the flag is performed, but the flag is
not set if it is not present.

Result

This macro will fail in the following circumstances:

There is no context object.

The flag has been set previously.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Object Macros

Sample

Assume the current context is an Entity.

Template

 [OnceForObject("Create Table")
 "First time"
]
 [OnceForObject("Create Table")
 "Second time"

Standard Macros

Template Language and Macro Reference Guide 169

]

Result

 First time

OwnerProperty

Description

This macro evaluates to the string representation of the specified property on the object owning
the current context object. A property is identified by its class name as defined in the metadata for
erwin Data Modeler.

Prototype

 OwnerProperty(PropertyName [, Option1 [, Option2 [, …]]])

Parameter Status Description

PropertyName Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. They can appear in any
order and are not case-sensitive.

The options available are found in the following table.

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to
the resource identifier string instead of the resource value.

"no_translate"

By default, properties with a data type of 'Resource' will load and all other properties will be
run through the default translator for their type. If this value is provided, the macro will eval-
uate to a raw value for the property. This is a superset of the "no_load" behavior.

"fail_if_empty"

Standard Macros

Template Language and Macro Reference Guide 170

If a parameter with the value of "fail_if_empty" is supplied, the macro will fail if the result is
an empty string.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The "fail_if_empty" option is supplied and the result is an empty string.

The current context object does not have an owning object.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume that the customer_number column in the following picture is the current context object:

Standard Macros

Template Language and Macro Reference Guide 171

Template

 OwnerProperty(�Physical_Name�)

Result

 CUSTOMER

OwnerQuotedName

Description

This macro evaluates to the string quoted name of the object owning the current context object.

Prototype

 OwnerProperty(QuoteCharacter)

Parameter Status Description

QuoteCharacter Opt he quote character to be used. If this is not supplied,
double quotes will be used..

Result

This macro will fail in the following circumstances:

The current context object does not have an owning object.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Standard Macros

Template Language and Macro Reference Guide 172

Assume that the customer_number column in the following picture is the current context object:

Template

 OwnerQuotedName

Result

 "CUSTOMER"

Pad

Description

This macro evaluates to the source string padded to the specified length. The padding will be done
by appending Character to the end of the string enough times to reach the desired length. If the
source string is longer than the desired length, the entire source string will be returned.

Prototype

 Pad(SourceString, Length[, Character])

Standard Macros

Template Language and Macro Reference Guide 173

Parameter Status Description

SourceString Req The source string.

Length Req The desired length of the string.

Character Opt The character used for padding. If this is not specified, a
space will be used.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Pad("Hello", "10") "<\n"
 Pad("Hello", "10", "*") "<\n"
 Pad("Hello", "3") "<"

Result

 Hello <
 Hello*****<
 Hello<

Standard Macros

Template Language and Macro Reference Guide 174

Pop

Description

This pops the current object from the context stack.

Prototype

 Pop

Result

This macro will fail in the following circumstances:

Only the anchor object is left on the stack.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume the context object is the Entity in the following illustration:

Standard Macros

Template Language and Macro Reference Guide 175

Template

 ForEachOwnee("Attribute")
 {
 ListSeparator("\n")
 PushOwner Property("Name") Pop "." Property("Name")
 }

Result

 CUSTOMER.a
 CUSTOMER.b
 CUSTOMER.c

Progress_ColumnDecimals

Description

This evaluates to the decimal portion of the data type of the current object.

Prototype

 Progress_ColumnDecimals

Result

This macro will fail in the following circumstances:

The current context object does not have the Physical_Data_Type property.

Deprecation Level

Active

Breaking Changes

None

Categories

Sample

Assume the current context is an attribute with a data type of DECIMAL(5,3).

Standard Macros

Template Language and Macro Reference Guide 176

Template

 Progress_ColumnDecimals

Result

 "3"

Progress_ColumnFormat

Description

This checks if the column has a Display_Format object attached via the Display_Format_Ref prop-
erty. If so, its Server_Value property is emitted. If not, and the data type of the column is "CHAR"
the macro returns the precision.

Prototype

 Progress_ColumnFormat

Result

This macro will fail in the following circumstances:

There is no attached 'Display Format' object, the data type is not "CHAR" or there is no pre-
cision.

Deprecation Level

Active

Breaking Changes

None

Categories

Sample

Assume the current context is E_1.a in the following illustration:

Standard Macros

Template Language and Macro Reference Guide 177

Template

 Progress_ColumnFormat

Result

 "X(18)" Page

ProperCase

Description

This macro evaluates to the proper case version of a string, where the initial letter and letters fol-
lowing a space are converted to upper case, and all other letters are converted to lower case.

Prototype

ProperCase(SourceString)

Parameter Status Description

SourceString Req The source string.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 178

Breaking Changes

None

Categories

String Macros

Sample

Template

 ProperCase("CUSTOMER")

Result

 Customer

Property

Description

This macro evaluates to the string representation of the specified property on the current context
object. A property is identified by its class name as defined in the metadata for erwin Data Modeler.

Prototype

 Property(PropertyName [, Option1 [, Option2 [, …]]])

Parameter Status Description

PropertyName Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. They can appear in any
order and are not case-sensitive.

The options available are found in the following table.

Standard Macros

Template Language and Macro Reference Guide 179

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to
the resource identifier string instead of the resource value.

"no_translate"

By default, properties with a data type of 'Resource' will load and all other properties will be
run through the default translator for their type. If this value is provided, the macro will eval-
uate to a raw value for the property. This is a superset of the "no_load" behavior.

"fail_if_empty"

If a parameter with the value of "fail_if_empty" is supplied, the macro will fail if the result is
an empty string.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The "fail_if_empty" option is supplied and the result is an empty string.

Deprecation Level

Active

Breaking Changes

The default behavior of this macro has changed since the erwin Data Modeler 7.1 release. The
earlier version defaulted to 'no_translate' and 'no_load'.

Categories

Property Macros

Sample

The difference in result when using the "no_translate" option is shown in the two example tem-
plates below. Assume that the CUSTOMER table in the following picture is the current context
object.

Standard Macros

Template Language and Macro Reference Guide 180

Template

 ForEachOwnee("Attribute")
 {
 Property("Name") " is "
 Property("Null_Option_Type", "no_translate") "\n"
 }
 Result
 customer_number is 1
 customer_first_name is 0
 customer_last_name is 0
 …etc.
 Template
 ForEachOwnee("Attribute")
 {
 Property("Name") " is "
 Property("Null_Option_Type") "\n"
 }

Result

 customer_number is NOT NULL
 customer_first_name is NULL

Standard Macros

Template Language and Macro Reference Guide 181

 customer_last_name is NULL
 …etc.

PropertyFrom

Description

This macro evaluates to the string representation of the specified property on the first object in the
context stack with the specified type. An object and a property are identified by their class names
as defined in the metadata for erwin Data Modeler.

Prototype

 PropertyFrom(ObjectType, PropertyName [, Option1 [, Option2 [,
…]]])

Parameter Status Description

ObjectType Req The type of the object desired.

PropertyName Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. They can appear in any
order and are not case-sensitive.

The options available are found in the following table.

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to
the resource identifier string instead of the resource value.

"no_translate"

By default, properties with a data type of 'Resource' will load and all other properties will be
run through the default translator for their type. If this value is provided, the macro will eval-
uate to a raw value for the property. This is a superset of the "no_load" behavior.

"fail_if_empty"

Standard Macros

Template Language and Macro Reference Guide 182

If a parameter with the value of "fail_if_empty" is supplied, the macro will fail if the result is
an empty string.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

An object of the specified type is not found on the context stack.

The "fail_if_empty" option is supplied and the result is an empty string.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

See the sample under the Property macro for an example of the use of the "no_translate" option.

Assume that the CUSTOMER table in the following picture is the current context object:

Standard Macros

Template Language and Macro Reference Guide 183

Template

 ForEachOwnee("Attribute")
 {
 PropertyFrom("Entity", "Name") "." Property("Name") "\n"
 }

Result

 CUSTOMER.customer_number
 CUSTOMER.customer_first_name
 CUSTOMER.customer_last_name
 …etc.

PropertyThrough

Description

This macro evaluates to the string representation of the specified property on the object pointed to
by the specified scalar reference property on the current context object. An object and a property
are identified by their class names as defined in the metadata for erwin Data Modeler.

Prototype

Standard Macros

Template Language and Macro Reference Guide 184

 PropertyThrough(ReferenceProperty, PropertyName [, Option1 [,
Option2 [, …]]])

Parameter Status Description

ReferenceProperty Req The reference property to use to locate the desired
owning object.

PropertyName Req The type name of the property.

Option1 � OptionN Opt One or more option keywords. They can appear in
any order and are not case-sensitive.

The options available are found in the following table.

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to
the resource identifier string instead of the resource value.

"no_translate"

By default, properties with a data type of 'Resource' will load and all other properties will be
run through the default translator for their type. If this value is provided, the macro will eval-
uate to a raw value for the property. This is a superset of the "no_load" behavior.

"fail_if_empty"

If a parameter with the value of "fail_if_empty" is supplied, the macro will fail if the result is
an empty string.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The referenced object is not found.

The "fail_if_empty" option is supplied and the result is an empty string.

Deprecation Level

Active

Standard Macros

Template Language and Macro Reference Guide 185

Breaking Changes

None

Categories

Sample

Assume the context object is the Relationship in the following illustration:

Template

 PropertyThrough("Parent_Entity_Ref", "Name")

Result

 E_1

PropertyValueCount

Description

This macro evaluates to the string representation of number of values in the property, zero if the
property is null or missing.

Prototype

 PropertyValueCount(Property)

Parameter Status Description

Property Req The type name of the property.

Standard Macros

Template Language and Macro Reference Guide 186

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Sample

Assume the context object is a Subject_Area with three Entity objects in it.

Template

 PropertyValueCount("Referenced_Entities_Ref")

Result

 3

PropertyWithDefault

Description

This macro evaluates to the string representation of the specified property on the current context
object. If the property does not evaluate successfully, a default value is returned.

Prototype

 PropertyWithDefault(Property, Default [, Option1[, Option2 [,
…]]])

Parameter Status Description

Standard Macros

Template Language and Macro Reference Guide 187

Property Req The type name of the property.

Default Req The default value.

Option1- OptionN Opt One or more option keywords. They can appear in any
order.

The options available are found in the following table.

"no_load"

By default, properties with the data type of 'Resource' will load and the macro will evaluate
to the loaded value. If this value is provided, properties with this data type will evaluate to a
resource identifier string.

"no_translate"

By default, properties with a data type of 'Resource' will load and all other properties will be
run through the default translator for their type. If this value is provided, the macro will eval-
uate to a raw value for the property. This overrides the "no_load" option.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

The default behavior of this macro has changed since the erwin Data Modeler r7.1 release. The
earlier version defaulted to 'no_translate' and 'no_load'.

Categories

Sample

Assume the model in the following illustration, which is shown in Definition Display Level:

Standard Macros

Template Language and Macro Reference Guide 188

Template

 ForEachOfType("Entity")
 {
 ListSeparator("\n")
 Property("Name") "\t"
 PropertyWithDefault("Definition", "<No definition>")
 }

Result

 E/1 The first entity created.
 E/2 <No definition>
 E/3 The third entity created.

PushFKViewRelationship

Description

This macro will push the contributing Relationship object if the current context object is a Key_
Group on a View object.

Prototype

 PushFKViewRelationship

Result

Standard Macros

Template Language and Macro Reference Guide 189

This macro will fail in the following circumstances:

The current object is not a foreign key Key_Group on a View.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume that the current context is the foreign key group created in V_1 in the following illustration:

Template

 PushFKViewRelationship
 Property("Name")

Result

 "E_1 R_1 V_1"

Standard Macros

Template Language and Macro Reference Guide 190

PushNewImage

Description

This macro is used when processing objects modified in the model, for example, during Alter Script
processing in erwin Data Modeler. If the current object is a phantom object representing a previous
state of the object, this macro will push the actual, current image of the object onto the context
stack.

Prototype

 PushNewImage

Result

This macro will fail in the following circumstances:

The current process does not supply the template engine a previous image of the model.

The current context object is not a phantom object representing a previous image of the
object.

The object no longer exists in the actual model.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume that the Entity object CUSTOMER was renamed to CUST during the current session.

Template

 /* With these parameters, the ForEachOfType iterator will push
the
 OLD image onto the context stack */

Standard Macros

Template Language and Macro Reference Guide 191

 ForEachOfType("Entity", "modified")
 {
 "execute sp_rename '" Property("Physical_Name") "', '"
 PushNewImage Property("Physical_Name") Pop "', 'OBJECT'\ngo"
 }

Result

 execute sp_rename 'CUSTOMER', 'CUST', 'OBJECT'
 go

PushOldImage

Description

This macro is used when processing objects modified in the model, for example, during Alter Script
processing in erwin Data Modeler. If the current object is a real object in the model (i.e., not a
phantom object) this macro will push the previous image of the object onto the context stack.

Prototype

 PushOldImage

Result

This macro will fail in the following circumstances:

The current process does not supply the template engine a previous image of the model.

The current context object is not a real object.

The previous image of the model does not contain a previous image of the object.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 192

Stack Macros

Sample

Assume the current context is an Entity object that was renamed from CUSTOMER to CUST dur-
ing the session.

Template

 "execute sp_rename '" PushOldImage Property("Physical_Name") Pop
 "', '" Property("Physical_Name") "', 'OBJECT'\ngo"

Result

 execute sp_rename 'CUSTOMER', 'CUST', 'OBJECT'
 go

PushOwner

Description

This pushes the owner of the current context object onto the context stack.

this refers to the owning object, not the value of the DB Owner property.

Prototype

 PushOwner

Result

This macro will fail in the following circumstances:

The current context object has no owner.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 193

Stack Macros

Sample

Assume that the context object is E_1 in the following illustration:

 PushOwner Property("Name") Pop

Template

 ForEachOwnee("Attribute")
 {
 ListSeparator("\n")
 [PushOwner Property("Name") "." Pop]Property("Name")
 }

Result

 E_1.a
 E_1.b
 E_1.c

PushReference

Description

This pushes the object referenced by the specified property of the current context object onto the
context stack.

Prototype

 PushReference(Property)

Standard Macros

Template Language and Macro Reference Guide 194

Parameter Status Description

Property Req The type name of the property.

Result

This macro will fail in the following circumstances:

The reference property does not exist.

The referenced object does not exist.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume the context object is the Relationship in the following illustration:

Template

 PushReference("Parent_Entity_Ref")
 Property("Name")
 Pop

Result

Standard Macros

Template Language and Macro Reference Guide 195

 E_1

PushTopLevelObject

Description

This macro will push the top level object for the current context object onto the stack. The top level
object is defined as the object for which a CREATE statement would be executed in SQL.

Prototype

 PushTopLevelObject

Result

This macro will fail in the following circumstances:

The current context object is not represented in the database.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume that the Attribute object 'a' is the current context object.

Standard Macros

Template Language and Macro Reference Guide 196

Template

 PushTopLevelObject
 Property("Name")

Result

 "E_1"

QuotedName

Description

This macro retrieves a name property from the current object and, based upon the current settings
in the FE Option Set, quotes the name. For objects having both the 'Physical Name' and the
'Name' properties, the 'Physical Name' property will be read first. If that fails, the 'Name' property
will be used. For all other objects, the 'Name' property will be used.

This macro is sensitive to the current FE Option Set. If quoting of names is disabled in the option
set, the quotes will not be emitted.

Prototype

 QuotedName([QuoteCharacter])

Parameter Status Description

QuoteCharacter Opt The quote character to be used. If this is not supplied,
double quotes will be used.

Standard Macros

Template Language and Macro Reference Guide 197

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the context object is E_1 in the following illustration, and the current FE Option Set has
quoted naming enabled:

Template

 QuotedName

Result

 "E_1"

QuotedNameThrough

Description

This macro retrieves a name property from the object pointed to by the specified scalar reference
property on the current context object and, based upon the current settings in the FE Option Set,

Standard Macros

Template Language and Macro Reference Guide 198

quotes the name. For objects having both the 'Physical Name' and the 'Name' properties, the 'Phys-
ical Name' property will be read first. If that fails, the 'Name' property will be used. For all other
objects, the 'Name' property will be used.

This macro is sensitive to the current FE Option Set. If quoting of names is disabled in the option
set, the quotes will not be emitted.

Prototype

 QuotedNameThrough(ReferenceProperty, [QuoteCharacter])

Parameter Status Description

ReferenceProperty Req The reference property to use to locate the desired
owning object.

QuoteCharacter Opt The quote character to be used. If this is not supplied,
double quotes will be used.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Property Macros

Sample

Assume the context object is the Relationship object in the following illustration, and the current FE
Option Set has quoted naming enabled:

Standard Macros

Template Language and Macro Reference Guide 199

Template

 QuotedNameThrough("Parent_Entity_Ref")

Result

 "E_1"

Remove

Description

This removes the specified variable.

Prototype

 Remove(VariableName)

Parameter Status Description

ValriableName Req The name of the previously defined variable.

Result

This macro will fail in the following circumstances:

The specified variable does not exist.

Deprecation Level

Standard Macros

Template Language and Macro Reference Guide 200

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("MyValue", "1")
 ["The value is now: " Value("MyValue")]
 Remove("MyValue")
 ["The value is now: " Value("MyValue")]

Result

 The value is now: 1

RemoveInteger

Description

This removes the specified variable.

Prototype

 RemoveInteger(VariableName)

Parameter Status Description

VariableName Req The name of the previously defined variable.

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 201

The specified variable does not exist.

Deprecation Level

Deprecated

Breaking Changes

None

Categories

String Macros

Sample

Template

 SetInteger("MyValue", "1")
 ["The value is now: " Integer("MyValue")]
 RemoveInteger("MyValue")
 ["The value is now: " Integer("MyValue")]

Result

 The value is now: 1

RemoveString

Description

This removes the specified variable.

Prototype

 RemoveString(VariableName)

Parameter Status Description

VariableName Req The name of the previously defined variable.

Standard Macros

Template Language and Macro Reference Guide 202

Result

This macro will fail in the following circumstances:

The specified variable does not exist.

Deprecation Level

Deprecated

Breaking Changes

None

Categories

String Macros

Sample

Template

 SetString("MyValue", "One")
 ["The value is now: " String("MyValue")]
 RemoveInteger("MyValue")
 ["The value is now: " String("MyValue")]

Result

 The value is now: One

Repush

Description

This pushes an object that already exists on the context stack onto the stack again.

Prototype

 Repush(Depth)

Parameter Status Description

Standard Macros

Template Language and Macro Reference Guide 203

Depth Req The zero-based depth of the object in the context stack. The
value provided must be greater than zero (zero indicates the cur-
rent context object) and less than the size of the stack.

The special value of "anchor" indicates that the anchor object
should be pushed regardless of the stack's depth.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

The Depth parameter does not evaluate to a number greater than or equal to '1' and is not
the special value of "anchor".

The depth specified by Depth is greater than the current size of the context stack.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume the context object is the Relationship object in the following illustration. For sake of sim-
plicity in the example, the template assumes that there is only one relation coming into E_2.

Template

Standard Macros

Template Language and Macro Reference Guide 204

 PushReference("Child_Entity_Ref")
 ForEachOwnee("Attribute")
 {
 ListSeparator("\n")
 @if(IsPropertyNull("Parent_Attribute_Ref")
 {
 Property("Name") " is owned."
 }
 @else
 {
 Property("Name") " is migrated by "
 Repush("2") Property("Name") Pop "."
 }
 }

Result

 a is migrated by R_2.
 b is owned.

RepushType

Description

This pushes an object that already exists on the context stack onto the stack again based upon the
class type.

Prototype

 Repush(Type)

Parameter Status Description

Type Req The type name of the object desired.

Result

This macro will fail in the following circumstances:

Standard Macros

Template Language and Macro Reference Guide 205

The required parameters are not supplied.

An object of the specified type was not found on the context stack.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Assume the context object is E_1 in the following illustration:

Template

 ForEachOwnee("Key_Group")
 {
 ListSeparator("\n")
 ForEachOwnee("Key_Group_Member")
 {
 ListSeparator("\n")
 Property("Name") " participates in a key group in "
 RepushType("Entity") Property("Name") Pop
 }
 }

Result

Standard Macros

Template Language and Macro Reference Guide 206

 a participates in a key group in E/1
 b participates in a key group in E/1

Right

Description

This macro evaluates to a substring comprised of the rightmost characters of the specified source
string.

Prototype

 Right(SourceString, Length)

Parameter Status Description

SourceString Req The source string.

Length Req The length of the desired substring.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

The Length parameter cannot be evaluated to a number greater than '1'.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 207

 Right("CUSTOMER", "3")

Result

 MER

Separator

Description

This inserts the specified separator between a set of values. The separator will be inserted
between any two values that are not empty strings.

Prototype

 Separator(Separator, Value1 [, Value2 [,…]])

Parameter Status Description

Separator Req The separator to insert.

Value1 Req The first value in the set.

Value2 � ValueN Opt The second through Nth value in the set.

Result

This will fail if:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 208

String Macros

Sample

Template

 Separator(",", "", "A", "B", "", "C")

Result

 A,B,C

Set

Description

This defines the specified variable and establishes its initial value. If the variable already exists, its
value is modified.

Prototype

 Set(VariableName, InitialValue)

Parameter Status Description

VariableName Req The name of the variable.

InitialValue Req The initial value of the variable.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Standard Macros

Template Language and Macro Reference Guide 209

Categories

String Macros

Sample

Template

 Set("My Counter", "1")
 Value("My Counter")

Result

 1

SetGlobalFlag

Description

This macro will set a flag. Flags are identified by a name and are not case-sensitive. Global flags
are set for the entire duration of the template evaluation unless cleared.

Prototype

 SetGlobalFlag(Flag)

Parameter Status Description

Flag Req The name of the flag to set.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

Standard Macros

Template Language and Macro Reference Guide 210

None

Categories

Stack Macros

Sample

Template

 /* Flag that the table is being recreated */
 SetGlobalFlag(Property("Name") "created")
 …
 @if (IsGlobalFlagSet(Property("Name") "created"))
 {
 "/* ALTER not necessary */"
 }
 @else
 {
 "ALTER TABLE " …
 }

Result

 /* ALTER not necessary */

SetInteger

Description

This defines the specified variable and establishes its initial value. If the variable already exists, its
value is modified.

Prototype

 SetInteger(VariableName, InitialValue)

Parameter Status Description

Standard Macros

Template Language and Macro Reference Guide 211

ValriableName Req The name of the variable.

InitialValue Req The initial value for the variable.

Result

This macro always succeeds.

Deprecation Level

Deprecated

Breaking Changes

None

Categories

String Macros

Sample

Template

 SetInteger("My Counter", "1")
 Integer("My Counter")

Result

 1

SetLocalFlag

Description

This macro will set a flag tied to the current context object. Flags are identified by a name and are
not case-sensitive. When a context object is pushed down on the stack, its flags are not longer vis-
ible by the IsLocalFlagSet macro. When a context object is popped off the stack, its flags are dis-
carded.

Prototype

Standard Macros

Template Language and Macro Reference Guide 212

 SetLocalFlag(Flag [, Depth])

Parameter Status Description

Flag Req The name of the flag to set.

Depth Opt This will set the named local flag on the stack entry Depth
levels above the current entry.

Result

This macro will fail in the following circumstances:

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Stack Macros

Sample

Template

 SetLocalFlag("MyFlag")
 [IsLocalFlagSet("MyFlag") "Flag was set #1.\n"]
 PushOwner
 [IsLocalFlagSet("MyFlag") "Flag was set #2.\n"]
 Pop
 [IsLocalFlagSet("MyFlag") "Flag was set #3."]

Result

Standard Macros

Template Language and Macro Reference Guide 213

 Flag was set #1.
 Flag was set #3.

SetString

Description

This defines the specified variable and establishes its initial value. If the variable already exists, its
value is modified.

Prototype

 SetString(VariableName, InitialValue)

Parameter Status Description

ValriableName Req The name of the variable.

InitialValue Req The initial value of the variable.

Result

This macro always succeeds.

Deprecation Level

Deprecated

Breaking Changes

None

Categories

String Macros

Sample

Template

Standard Macros

Template Language and Macro Reference Guide 214

 SetString("MyValue ", "One")
 String("MyValue ")

Result

 One

ShouldGenerate

Description

This macro tests whether the current context object should generate, based upon both its prop-
erties and the current FE Option Set.

Prototype

 ShouldGenerate

Result

This macro will fail in the following circumstances:

The Generate property is associated with the object type by the metadata, but not set.

The Is_Logical_Only property is set on the object.

The object is built-in�the Built_In_Id property is set on the object.

The object is filtered out by the current FE Option Set.

Deprecation Level

Active

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the model contains two Entity objects: E_1 is marked logical-only and E_2 is not.

Standard Macros

Template Language and Macro Reference Guide 215

Template

 ForEachOfType("Entity")
 {
 ListSeparator("\n")
 [ShouldGenerate
 "Generate " Property("Name")
]
 }

Result

 E_2

String

Description

This retrieves the value in the specified variable previously set with SetString.

Prototype

 String(VariableName)

Parameter Status Description

VariableName Req The name of the previously defined variable.

Result

This macro will fail in the following circumstances:

The specified variable is not found.

Deprecation Level

Deprecated

Breaking Changes

None

Standard Macros

Template Language and Macro Reference Guide 216

Categories

String Macros

Sample

Template

 SetString("MyValue ", "One")
 String("MyValue ")

Result

 One

Substitute

Description

The macro evaluates to a string where one or more substrings are replaced with a new value.

Prototype

 Substitute(SourceString, NewValue, OldValue1 [, OldValue2 [,…]]
)

Parameter Status Description

SourceString Req The source string.

NewValue Req The new value to place into the string.

OldValue1 Req The first substring to replace.

OldValue2- OldValueN Opt Additional substrings to replace.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Standard Macros

Template Language and Macro Reference Guide 217

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Assume the context object is E_1 in the following illustration:

Template

 /* Replace all spaces and tabs in the decription with under-
scores */
 Substitute(Property("Description"), "_", " ", "\t")

Result

 The_first_entity_created.

Switch

Description

This macro, in conjunction with the Choose and Default macros, tests a predicate against a range
of values and executes a block when a match is found.

Prototype

Standard Macros

Template Language and Macro Reference Guide 218

 Switch(Predicate) {}

Parameter Status Description

Predicate Req This parameter evaluates to the value that is to be tested.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

Miscellaneous Macros

Sample

Assume the context is the primary key of an Entity object.

Template

 Switch(Left(Property("Key_Group_Type"), "2"))
 {
 Choose("PK")
 {
 "This is a primary key."
 }
 Choose("AK")
 {
 "This is an alternate key."
 }
 Default
 {

Standard Macros

Template Language and Macro Reference Guide 219

 "This is an inversion entry."
 }
 Choose("XX")
 {
 /* This block will never execute, because a preceding block
 will always evaluate successfully */
 }
 }

Result

 This is a primary key.

TableHasFilteredIndex

Description

This macro determines if the context Entity owns a KeyGroup with a WHERE clause marked to be
generated.

Prototype

 TableHasFilteredIndex

Result

This macro will fail in the following circumstances:

The context object is not an Entity.

The specified owned object cannot be found.

Deprecation Level

Active

Breaking Changes

None

Categories

None

Standard Macros

Template Language and Macro Reference Guide 220

Sample

Template

 TableHasFilteredIndex

Result

Trim

Description

This macro evaluates to the source string trimmed of leading and trailing characters.

Prototype

 Trim(SourceString [, TrimSet])

Parameter Status Description

SourceString Req The source string.

TrimSet Opt The set of characters to trim. If this is not supplied, spaces
and tabs are trimmed.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Standard Macros

Template Language and Macro Reference Guide 221

Sample

Template

 Trim(" A string with extra spaces. ") "\n"
 Trim(">>>A string with unwanted characters.<<<","<>")

Result

 A string with extra spaces.
 A string with unwanted characters.

UpperCase

Description

This macro evaluates to the upper case version of a string.

Prototype

 UpperCase(SourceString)

Parameter Status Description

SourceString Req The source string.

Result

This macro will fail in the following circumstances:

The required parameters are not passed in.

Deprecation Level

Active

Breaking Changes

None

Categories

Standard Macros

Template Language and Macro Reference Guide 222

String Macros

Sample

Assume the context object is E_1 in the following illustration:

Template

 ForEachOwnee("Attribute")
 {
 ListSeparator(", ")
 UpperCase(Property("Name"))
 }

Result

 A, B

Value

Description

This retrieves the value in the specified variable.

Prototype

 Value(VariableName)

Standard Macros

Template Language and Macro Reference Guide 223

Parameter Status Description

VariableName Req The name of the previously defined variable.

Result

This macro will fail in the following circumstances:

The specified variable is not found.

Deprecation Level

Active

Breaking Changes

None

Categories

String Macros

Sample

Template

 Set("My Counter", "1")
 Value("My Counter")

Result

 1

Standard Macros

Template Language and Macro Reference Guide 224

Forward Engineering Macros

Template Language and Macro Reference Guide 225

Forward Engineering Macros
These macros are usable only in the context of the script generation in Forward Engineering and
Alter Script.

This section contains the following topics

ActivateDataPreservation
DataPreservationOption
EndOfStatement
IsAlterScriptGeneration
IsEntityInSubjectArea
IsLastColumn
IsModified
IsSchemaGeneration
NextExistingColumn
Option
OwnerOverride
RecordAlter
RecordCreate
SchemaExecCommand
TempTable

ActivateDataPreservation

Description

This macro registers an Entity or Attribute object for the Data Preservation mechanism. The con-
text object is added in the Data Preservation objects list. For the context object, data is prepared in
the background to be displayed in the Data Preservation Options dialog.

Prototype

 FE::ActivateDataPreservation

Result

The macro will fail if:

The context object is not an Entity or Attribute.

Forward Engineering Macros

#o6972
#o6974
#o6976
#o6977
#o6978
#o6979
#o6980
#o6981
#o6982
#o6983
#o6984
#o6986
#o6987
#o6988
#o6989

Template Language and Macro Reference Guide 226

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 [IsAlterScriptX

 /* Add this entity in the data preservation list. */

 [ActivateDataPreservation]

 …

]

Result

The entity's data will now be preserved across the alter process.

Description

This macro inserts a bucket identification token into the script. This token is interpreted by the
script processing engine for sorting purposes and then removed. See the document, Editing For-
ward Engineering Templates.pdf, for a complete description of buckets.

Prototype

 FE::Bucket(BucketNumber)

Parameter Status Description

BucketNumber Req The bucket number.

Result

This macro will fail if:

Forward Engineering Macros

Template Language and Macro Reference Guide 227

The required parameters are not supplied.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 FE::Bucket("90")

 …

Result

There will be no visible effect in the script generated by the FE engine, as the bucket tokens are
stripped out of the final output. If a template is expanded outside of the FE engine, the output will
appear as follows, where �90� is the bucket number.

 @@*B=90B*@@

DataPreservationOption

Description

This macro is used to get a specific user selection from the Data Preservation Options dialog. The
Data Preservation is enabled when there is a drop and re-create of an entity for the Alter Scripts.

The list of options that can be tested is found in the following table.

WhereClause

Evaluates to the state of the user-specified "Where Condition".

DropTempTable

Evaluates to the state of the "Drop Temp Table" check box.

PreserveData

Forward Engineering Macros

Template Language and Macro Reference Guide 228

Evaluates to the inverse value of �Do NOT Preserve Data� check box.

IsDropRecreate

Evaluates to the value of �Force DROP/re-CREATE Table� check box.

IsAlterRequired

Evaluates to the inverse value of �Force DROP/re-CREATE Table� check box.

RegisterEntity

This option sets the template flag indicating that the query is generated to transfer the data from
the temp table to the new modified table.

Prototype

 FE::DataPreservationOption(OptionName)

Parameter Status Description

OptionName Req The name of the option.

Result

See the above table for explanations of return values.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Description

This emits the erwin Data Modeler-generated triggers for the context entity.

Prototype

 FE::EmitERwinGeneratedTriggers

Forward Engineering Macros

Template Language and Macro Reference Guide 229

Result

This macro will fail if:

The erwin Data Modeler triggers cannot be emitted.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 FE::EmitERwinGeneratedTriggers

Result

 create procedure erwin_raise_except(err int,msg varchar(255))

 raise exception err,0,msg;

 end procedure;

 CREATE TRIGGER tD_E_1 DELETE ON E_1

 …etc.

EndOfStatement

Description

This macro inserts an end-of-statement token into the script. This token is interpreted by the script
processing engine and then removed. This should not be confused with macros like %DBMSDelim
that insert end of statement delimiters interpreted by the database.

Prototype

Forward Engineering Macros

Template Language and Macro Reference Guide 230

 FE::EndOfStatement

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 FE::EndOfStatement

Result

There will be no visible effect in the script generated by the FE engine, as the end of statement
markers are stripped out of the final output. If a template is expanded outside of the FE engine, the
output will appear as follows.

 @@*EOS*@@

IsAlterScriptGeneration

Description

This macro succeeds if the process running the script is Alter Script Generation.

Prototype

 FE::IsAlterScriptGeneration

Result

This macro will fail in the following circumstances:

Forward Engineering Macros

Template Language and Macro Reference Guide 231

The template is not being expanded as part of Alter Script.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 [FE:: IsAlterScriptGeneration

 /* Generate alter script-specific stuff */

]

Result

The Alter Script-specific template will be emitted.

IsEntityInSubjectArea

Description

This macro succeeds if current context object is located in the Referenced_Entities_Ref property
of the current Subject_Area.

Prototype

 FE::IsAlterScriptGeneration

Result

This macro will fail in the following circumstances:

The current context object is not located in the Referenced_Entities_Ref property of the cur-
rent Subject_Area.

Deprecation Level

Forward Engineering Macros

Template Language and Macro Reference Guide 232

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 [FE::IsEntityInSubjectArea

 /* Only do this if the entity is in the current subject area */

]

IsLastColumn

Description

This predicate is used by Alter Script processing to determine if the insertion of columns can be
done with an ALTER statement, or if the table must be dropped and recreated.

It determines if new Attribute objects have been added to the Entity object owning the Attribute
object that is the current context object during the current session.

If new Attribute objects were added, then the macro checks if subsequent Attribute objects were
also newly added. The current FE Option Set is used to determine what ordering is being used.

If no Attribute objects were added, the macro returns tests if the current context is the last Attribute
based on the settings of the current FE Option Set.

Prototype

 FE::IsLastColumn

Result

This macro will fail in the following circumstances:

Forward Engineering Macros

Template Language and Macro Reference Guide 233

Attribute objects were added, but there are Attribute objects later in the current sort order
that were not newly added.

No Attribute objects were added, but the current context object is not the last one.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 [FE::IsLastColumn

 /* We can use ALTER, so emit construct the statement */

 "ALTER TABLE " …

]

Result

This particular clause will be emitted.

IsModified

Description

This macro succeeds functions as does the IsModified macro, except that properties not rep-
resented in the database are not considered when testing for modifications.

Prototype

 FE::IsModified

Result

This macro will fail in the following circumstances:

Forward Engineering Macros

Template Language and Macro Reference Guide 234

The current context object is not modified, or is only modified in properties that are not rep-
resented in the database.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

The following block will only execute if the object is modified in a database property other than com-
ment.

Template

 FE::IsModified("Comment")

IsSchemaGeneration

Description

This macro succeeds if the process running the script is Schema Generation.

Prototype

 FE::IsSchemaGeneration

Result

This macro will fail in the following circumstances:

The template is not being expanded as part of Schema Generation.

Deprecation Level

Active

Breaking Changes

None

Forward Engineering Macros

Template Language and Macro Reference Guide 235

Categories

Forward Engineering Macros

Sample

Template

 [FE::IsSchemaGeneration

 /* Generate forward engineering script-specific stuff */

]

Result

The Forward Engineering-specific template will be emitted.

NextExistingColumn

Description

This macro is used by the Alter Script mechanism for databases that allow the creation of a column
in the middle of a table. It evaluates to the name of the next pre-existing Attribute object after a
newly-created Attribute. The current FE Option Set is used to determine the sort order.

Prototype

 FE::NextExistingColumn

Result

This macro will fail in the following circumstances:

There is not a succeeding pre-existing Attribute object.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Template Language and Macro Reference Guide 236

Forward Engineering Macros

Sample

Template

 …

 "ALTER TABLE "

 …

 ["\r\n" "BEFORE " FE::NextExistingColumn]

 …

Result

This particular clause will be emitted.

Option

Description

This predicate tests whether the specified option is turned on in the current FE Option Set.

The list of options that can be tested is found in the following table. For a description of what these
options control, consult the Help system for the Forward Engineering dialogs.

AKConstraintInAlter AKConstraintInCreate

AlterStatements CachedView

CachedViewCreateFunction CachedViewCreateFunctionSynonym

CachedViewCreateMacro CachedViewCreateOption

CachedViewCreateProcedure CachedViewCreateProcedureSynonym

CachedViewCreateSynonym CachedViewCreateTrigger

CachedViewDropFunction CachedViewDropFunctionSynonym

CachedViewDropMacro CachedViewDropOption

CachedViewDropProcedure CachedViewDropProcedureSynonym

CachedViewDropSynonym CachedViewDropTrigger

CachedViewLOBStorage CachedViewPartitions

CachedViewPhysicalStorage CachedViewPostScript

Forward Engineering Macros

Template Language and Macro Reference Guide 237

CachedViewPreScript CachedViewUsingIndexStorage

Column ColumnCheckConstraint

ColumnCompress ColumnCreatePrivilege

ColumnDefaultValue ColumnLabel

ColumnLOBStorage ColumnLogicalName

ColumnPhysicalOrder ColumnTitle

ColumnUseDomain Comments

ConstraintFormat ConstraintName

ConstraintState Create

Create CreateAggregate

CreateAKIndex CreateApplicationRole

CreateAssembly CreateAssemblySynonym

CreateAsymmetricKey CreateAuthorization

CreateBufferpool CreateCachedView

CreateCachedViewAlternateKeyIndex CreateCachedViewIndexOption

CreateCachedViewIndexPartitions CreateCachedViewIndexPhysicalStorage

CreateCachedViewInversionEntryIndex CreateCast

CreateCertificate CreateCluster

CreateClusterIndex CreateClusterIndexPhysicalStorage

CreateCollection CreateCredential

CreateDatabase CreateDatabaseLink

CreateDatabasePrivilege CreateDatabaseRole

CreateDatabaseTrigger CreateDBPrivilege

CreateDefault CreateDirectory

CreateDiskgroup CreateDomain

CreateFKConstraint CreateFKIndex

CreateFulltextCatalog CreateFulltextIndex

CreateFunctionSynonym CreateHashIndex

CreateIEIndex CreateIndex

CreateIndexOption CreateLibrary

CreateLocation CreateLogin

CreateMethod CreateNodegroup

Forward Engineering Macros

Template Language and Macro Reference Guide 238

CreateOrdering CreatePackage

CreatePackageContext CreatePackageSynonym

CreatePartitionFunction CreatePartitionScheme

CreatePKConstraint CreatePKIndex

CreateProfile CreateReplicationGroup

CreateRole CreateRollbackSeg

CreateRule CreateSchema

CreateSchemaPrivilege CreateSegment

CreateSequence CreateServerTrigger

CreateStogroup CreateSymmetricKey

CreateSynonym CreateTable

CreateTablespace CreateTransform

CreateUniqueConstraint CreateUserDefinedType

CreateUserId CreateView

CreateViewIndex CreateViewIndexAK

CreateViewIndexClustered CreateViewIndexIE

CreateViewIndexPhysicalStorage CreateViewPrivilege

CreateXMLIndex CreateXMLSchemaCollection

DeleteRelation DoNotUseODBC

Drop DropAggregate

DropAggregateSynonym DropAKIndex

DropApplicationRole DropAssembly

DropAssemblySynonym DropAsymmetricKey

DropAuthorization DropCachedView

DropCachedViewAlternateKeyIndex DropCachedViewIndex

DropCachedViewInversionEntryIndex DropCast

DropCertificate DropCluster

DropClusterIndex DropCredential

DropDatabase DropDatabaseLink

DropDatabaseRole DropDatabaseTrigger

DropDefault DropDirectory

Forward Engineering Macros

Template Language and Macro Reference Guide 239

DropDiskgroup DropFKIndex

DropFulltextCatalog DropFulltextIndex

DropFunctionSynonym DropHashIndex

DropIEIndex DropIndex

DropIndexOption DropLibrary

DropLogin DropMethod

DropOrdering DropPackage

DropPackageContext DropPackageSynonym

DropPartitionFunction DropPartitionScheme

DropPKIndex DropProfile

DropReplicationGroup DropRole

DropRollbackSeg DropRule

DropSchema DropSequence

DropServerTrigger DropSymmetricKey

DropSynonym DropTable

DropTablespace DropTransform

DropUserDefinedType DropUserId

DropView DropViewIndex

DropViewIndexAK DropViewIndexIE

DropXMLIndex DropXMLSchemaCollection

ErwinExceptions ERwinGeneratedTrigger

FKConstraintInAlter FKConstraintInCreate

GeneratedTriggerRelationshipOverride GeneratedTriggerRITypeOverride

GenerateRI GenerateUserDefinedTrigger

Include IncludeMDXIndex

IncludeNDXIndex Index

IndexClustered IndexPartitions

IndexPhysicalStorage LabelPKIndex

LastOption MaterializedViewLog

MaterializedViewLogCreateOption MaterializedViewLogDropOption

MaterializedViewLogPartitions MaterializedViewLogPhysicalStorage

Forward Engineering Macros

Template Language and Macro Reference Guide 240

ModelCreateFunction ModelCreateMacro

ModelCreateProcedure ModelCreateProcedureSynonym

ModelCreateSynonym ModelDropFunction

ModelDropMacro ModelDropProcedure

ModelDropProcedureSynonym ModelDropSynonym

ModelOption ModelPostScript

ModelPreScript NoCarraigeReturn

ODBC OnDeleteFKConstraint

OnUpdateFKConstraint OtherOptions

OtherOptionsDatabase OtherOptionsSchema

OtherOptionsUserDefinedProperties OverrideOwnerAll

OverrideOwnerAuthorization OverrideOwnerCachedView

OverrideOwnerDatabase OverrideOwnerDefault

OverrideOwnerDomain OverrideOwnerEntity

OverrideOwnerFunction OverrideOwnerKeyGroup

OverrideOwnerMacro OverrideOwnerOracleCluster

OverrideOwnerOracleClusterIndex OverrideOwnerOracleLibrary

OverrideOwnerOraclePackage OverrideOwnerSequence

OverrideOwnerSQLServerAggregate OverrideOwnerSQLServerApplicationRole

OverrideOwnerSQLServerXMLSchemaCollection OverrideOwnerStoredProcedure

OverrideOwnerSynonym OverrideOwnerTrigger

OverrideOwnerValidationRule OverrideOwnerView

PKConstraintInAlter PKConstraintInCreate

QuoteName RefrentialIntegrity

RunCheckModel SchemaCreateOption

SchemaDropOption Security

SequenceCreateSynonym SequenceDropSynonym

SPCreateFKConstraint SPCreatePKConstraint

SpecifyOwner Storage

StorageCreateOption StorageDropOption

StripDelimiter SuppressParameterNames

Forward Engineering Macros

Template Language and Macro Reference Guide 241

SuppressPrimaryIndexName SuppressSecondaryIndexNames

TabCheck Table

TableCheckConstraint TableCreateFunction

TableCreateFunctionSynonym TableCreateMacro

TableCreateMaterializedViewLog TableCreateOption

TableCreatePrivilege TableCreateProcedure

TableCreateProcedureSynonym TableCreateSynonym

TableCreateTrigger TableDropFunction

TableDropFunctionSynonym TableDropMacro

TableDropMaterializedViewLog TableDropOption

TableDropProcedure TableDropProcedureSynonym

TableDropSynonym TableDropTrigger

TablePartitions TablePhysicalStorage

TablePostScript TablePreScript

Trigger TriggerCreateOption

TriggerDropOption UseODBC

UserTriggerRelationshipOverride UserTriggerRITypeOverride

View ViewCreateFunction

ViewCreateFunctionSynonym ViewCreateMacro

ViewCreateOption ViewCreateProcedureSynonym

ViewCreateStoredProcedure ViewCreateSynonym

ViewCreateTrigger ViewDropFunction

ViewDropFunctionSynonym ViewDropMacro

ViewDropOption ViewDropProcedureSynonym

ViewDropStoredProcedure ViewDropSynonym

ViewDropTrigger ViewPostScript

ViewPreScript WrapText

Prototype

 FE::Option(OptionName)

Forward Engineering Macros

Template Language and Macro Reference Guide 242

Parameter Status Description

OptionName Req The name of the option.

Result

This macro will fail in the following circumstances:

he option is not turned on.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 /* Are we generating in physical order? */

 [OptionX("ColumnPhysicalOrder")

 ForEachReference("Physical_Columns_Order_Ref")

 {

 Execute("Column Properties")

 }

]

Result

The code for generating the columns in physical order will be emitted if you have selected this
option.

Forward Engineering Macros

Template Language and Macro Reference Guide 243

OwnerOverride

Description

This macro evaluates to the appropriate Owner Override value specified in the Forward Engin-
eering dialog.

Prototype

 FE::OwnerOverride([DefaultToModel [, OwnerLevels]])

DefaultToModel

Status: Opt

If this value is set to �true� and no owner override is specified in the Forward Engineering dialog,
then the value found in the DB Owner property of the object will be used.

OwnerLevels

Status: Opt

If this is specified, the value will be determined for the owning object this number of levels above
the current context object.

Result

This macro will fail in the following circumstances:

There is no owner override specified and DefaultToModel is not present.

There is no owner override, DefaultToModel is present, but there is no value specified for
the Schema_Name property on the object in the model.

OwnerLevels is specified and the current context object is not that deep in the model own-
ership tree.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Template Language and Macro Reference Guide 244

Forward Engineering Macros

Sample

Assume the following table is the current context object. The first example results show what
would emit if an owner override of �sa2� was in place. The second example results show what
would emit if no owner override was in place.

Template

 [FE::OwnerOverride "."] Property("Physical_Name") "\n"

 [FE::OwnerOverride("true") "."] Property("Physical_Name") "\n�

 ForEachOwnee("Attribute")

 {

 ListSeparator("\n")

 FE::OwnerOverride("true�, "1") "." OwnerProperty("Physical_Name")

 "." Property("Physical_Name�)

 }

Result � Example #1

 sa2.E_1

 sa2.E_1

 sa2.E_1.a

 sa2.E_1.b

Result � Example #2

Forward Engineering Macros

Template Language and Macro Reference Guide 245

 E_1

 sa.E_1

 sa.E_1.a

 sa.E_1.b

RecordAlter

Description

This macro inserts an FE Record Alter token into the script. This token is interpreted by the script
processing engine when creating Alter scripts. Some changes to a model object can be handled by
an ALTER statement, while other changes require the corresponding database object to be
dropped and recreated. If a change of the first type is processed before a change of the second
type, a redundant ALTER statement is generated. To counter this, all ALTER statements are
tagged using this macro. When the FE engine processes the script, it examines the entire state of
the object and, if another change forces the drop/recreate, eliminates the ALTER statement.
These tags are removed from the final script.

Prototype

 FE::RecordAlter

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

Forward Engineering Macros

Template Language and Macro Reference Guide 246

 FE::RecordAlter

 …

Result

There will be no visible effect in the script generated by the FE engine, as the alter script tokens
are stripped out of the final output. If a template is expanded outside of the FE engine, the output
will appear as follows, where �189� is an object�s id.

 @@*A=189A*@@

RecordCreate

Description

This macro will attempt to set a global flag that is a concatenation of the context object�s id, the
label �Create�and the context object�s type name. The macro will fail if this flag is already set.
The flag indicates that the object has been created, which allows the post processing to test for
and remove any alter statements which may have been generated for the object.

Prototype

 FE::RecordCreate

Result

This macro will fail in the following circumstances:

The flag is already set.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

Forward Engineering Macros

Template Language and Macro Reference Guide 247

 FE::RecordCreate

 …

Result

No visible result.

SchemaExecCommand

Description

This macro inserts an FE Execute Command token into the script. This token is interpreted by the
script processing engine when working against a 4GL such as Access or FoxPro in order to con-
struct the commands to modify the database objects via the 4GL's API.

Prototype

 FE::SchemaExecCommand(CommandString)

Parameter Status Description

CommandString Req The command string to embed.

Result

This macro always succeeds.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 FE::SchemaExecCommand("Create Access Field Start")

Forward Engineering Macros

Template Language and Macro Reference Guide 248

Result

There will be no visible effect in the script generated by the FE engine, as the schema execution
tokens are stripped out of the final output. If a template is expanded outside of the FE engine, the
output will appear as follows.

 @@*SECreate Access Field StartSE*@@

TempTable

Description

This evaluates to the name of the temporary table that the Data Preservation option of Alter Script
has created.

Prototype

 FE::TempTable

Result

This macro will fail in the following circumstances:

Alter Script has not constructed a temporary table.

Deprecation Level

Active

Breaking Changes

None

Categories

Forward Engineering Macros

Sample

Template

 …

 "INSERT INTO " …

 …

Forward Engineering Macros

Template Language and Macro Reference Guide 249

 " SELECT " …

 …

 " FROM " TempTable

 [" WHERE " DataPreservationOptions("WhereClause")]

Forward Engineering Macros

	Template Language and Macro Reference
	Introduction
	Metadata Names

	TLX Syntax
	Literals
	Macros
	Macro Return Codes

	Keywords
	Conditional Blocks
	Propagating Blocks
	Comments

	TLX Expansion
	Phantom Objects

	Macro Overview
	Name
	Definition
	Prototype Specification
	Result Specification
	Breaking Changes Specification
	Categories
	Sample

	Standard Macros
	Access_DatabaseName
	Access_Datatype
	AllowAlterDatatype
	AreAllOwneesCreated
	AreAllOwneesDeleted
	AreStringsEqual
	Choose
	ClearAllGlobalFlags
	ClearGlobalFlag
	ClearLocalFlag
	ConversionFunction
	DatabaseConnection
	Date
	DBMSVersion
	Decrement
	Default
	EnumProperty
	EnumProperty2
	Equal
	Execute
	ExecuteTest
	Fail
	ForEachFKColumn
	ForEachMigratingColumn
	ForEachOfType
	ForEachOwnee
	ForEachOwneeFrom
	ForEachOwneeThrough
	ForEachProperty
	ForEachProperty.IsInherited
	ForEachProperty.Type
	ForEachProperty.Value
	ForEachPropertyValue
	ForEachPropertyValue.Value
	ForEachReference
	ForEachReference.IsInherited
	ForEachReferenceFrom
	foreachreferencethrough
	foreachreferencing
	foreachuserdefinedproperty
	formatproperty
	greater
	greaterorequal
	hasownees
	haspropertycharacteristic
	includefile
	increment
	integer
	iscreated
	isdefaultritrigger
	isdeleted
	isglobalflagclear
	isglobalflagset
	islocalflagset
	ismatch
	ismodified
	isnotinheritedfromudd
	isownerpropertyequal
	isownerpropertyfalse
	isownerpropertynotequal
	isownerpropertytrue
	ispropertyequal
	ispropertyequalfrom
	ispropertyequalthrough
	ispropertyfalse
	ispropertyfalsefrom
	ispropertyfalsethrough
	ispropertymodified
	ispropertynotequal
	ispropertynotequalfrom
	ispropertynotequalthrough
	ispropertynotnull
	ispropertynull
	ispropertyreordered
	ispropertytrue
	ispropertytruefrom
	ispropertytruethrough
	iterationcount
	left
	less
	lessorequal
	listseparator
	lookup
	lookupproperty
	loop
	lowercase
	mid
	modulo
	notequal
	objectid
	objecttype
	onceforobject
	ownerproperty
	ownerquotedname
	pad
	pop
	progress_columndecimals
	progress_columnformat
	propercase
	property
	propertyfrom
	propertythrough
	propertyvaluecount
	propertywithdefault
	pushfkviewrelationship
	pushnewimage
	pusholdimage
	pushowner
	pushreference
	pushtoplevelobject
	quotedname
	quotednamethrough
	remove
	removeinteger
	removestring
	repush
	repushtype
	right
	separator
	set
	setglobalflag
	setinteger
	setlocalflag
	setstring
	shouldgenerate
	string
	substitute
	switch
	tablehasfilteredindex
	trim
	uppercase
	value

	Forward Engineering Macros
	ActivateDataPreservation
	DataPreservationOption
	EndOfStatement
	IsAlterScriptGeneration
	IsEntityInSubjectArea
	IsLastColumn
	IsModified
	IsSchemaGeneration
	NextExistingColumn
	Option
	OwnerOverride
	RecordAlter
	RecordCreate
	SchemaExecCommand
	TempTable

